Volume 8: Proceedings of Applied Energy Symposium: MIT A+B, United States, 2020

Investigation of hybrid photovoltaic-wind system with battery storage for high-rise buildings in Hong Kong Jia liu, Xi Chen, Hongxing Yang

Abstract

Renewable energy is attracting much attention due to limited traditional energy sources and severe environmental issues caused by the over-consumption of fossil fuels. It is promising to use renewable energy for the power supply to buildings, as the building sector accounts for a large portion of global energy consumption with a continuous increasing trend. This study aims to analyze the technical and economic feasibilities of applying hybrid photovoltaic-wind-battery systems for high-rise buildings in Hong Kong based on the TRNSYS platform. Detailed economic benefits of the hybrid renewable energy system are estimated considering the feed-in tariff, transmission line loss saving, network expand and infrastructure saving, and social benefit of carbon reduction. It is found that the hybrid photovoltaic-wind-battery system can cover 24.79% of the annual electrical load of a high-rise building. The average self-consumption and self-sufficiency ratio of the hybrid system is 100% and 46% respectively. Battery storage in the hybrid system can not only improve the self-consumption and self-sufficiency performance, but also benefit the utility grid relief. The levelized cost of energy of the hybrid photovoltaic-wind-battery system is about 0.431 US$/kWh. This study can provide references for the development of hybrid renewable energy systems in Hong Kong and guide the application of renewable energy and battery systems to high-rise buildings in urban regions.

Keywords photovoltaic, wind, battery, high-rise building, technical-economic feasibility

Copyright ©
Energy Proceedings