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Abstract— Policy makers are tasked with selecting, 

designing, and implementing policies to support the 

transition to a sustainable power system. As part of the task 

they often turn to models to quantify and compare the 

options available to them. In this work we investigate the 

importance of representing a wide range of economic and 

physical sources of uncertainty in the modelling used to 

evaluate different decarbonization policies. 

We investigate six different energy policies across three 
different methods for incorporating uncertainty into decision 

making models in a Portugal based case study. We find that 

the method for incorporating uncertainty into the model 

used to evaluate policies leads to differences in the resulting 

capacity expansion plan, in the ability to meet carbon 

intensity targets, and in the abatement costs of policies. 

Policies designed in a deterministic way can result in 

significant violations of the emission target and the expected 

costs be more than double those estimated in a deterministic 

way.  

We also find that the six policies appear roughly 

equivalent when analysed by the deterministic model but 
perform very differently when uncertainty is considered 

potentially biasing decision makers that ignore uncertainty. 

Finally, we demonstrate that the simplified inclusion of 

uncertainty, such as scenario analysis, often underestimates 

the carbon reduction effect of policies and can over or under 

estimate costs. 

Keywords— generation expansion planning, electricity 

market modelling, renewable energy policy, 

decarbonization 

I. INTRODUCTION 

The role of uncertainty in the energy sector is becoming 
increasingly important over both the long- and short-term 
planning horizons [1]. Both the number of areas where 
uncertainty is considered, and the degree of that uncertainty, 
are considered to be growing [2]. The policy maker, energy 
system planner, or utility is faced with making long term 
investment decisions, often for assets with a 30 year plus 
lifetime, where significant uncertainty exists over a number 
of important dimensions. 

For a demonstration of the magnitude of these 
uncertainties consider the historical review of long term 
energy demand forecasts undertaken in [3]. The authors 
demonstrate that historical forecasts of energy demand were 
both systematically high and underestimated the level of 
uncertainty. The realized level of energy demand in the year 
2000 was less than half the most optimistic forecasts and 
well below the average. For a more recent demonstration of 
the scope of uncertainty [4] reviews forecasts for levelized 
CCGT costs for the period to 2040. The authors find a near 
consensus in cost projections for forecasts generated before 
2005 in the 20-40£/MWh range. However, forecasts created 
between 2005 and 2010 range in values between 60-
160£/MWh. The representation of these large uncertainties is 
identified in [5] as one of the key challenges to the future of 
energy system modelling. 

It is clear then that uncertainty is an important component 
of the future of the energy sector and this should then be an 
important input to the decision-making process. We focus on 
the problem faced by policy makers who are tasked with 
planning and encouraging the decarbonization of the energy 
sector. We specifically look at the models used in the 
evaluation of policy decisions and how they deal both with 
uncertainty, and the way the market responds to this 
uncertainty.  

In [6] the authors review approaches for evaluating 
energy and renewable support policies and find that 
generation expansion planning (GEP) models are a common 
approach to evaluating these decisions.  When we look at the 
literature for this class of model, we find evidence that 
uncertainty is often overlooked or excessively simplified for 
the purposes of modelling. In a recent review of the literature 
of GEP [7] of the 227 papers cited only 54 were classified as 
containing a stochastic element and only 17 included 
stochasticity in more than one input dimension.  

In addition to the sources of uncertainty, the method of 
including it into the model is also an important dimension. 
Typical approaches range from simplistic treatments which 
involve multiple simulations of a deterministic model such as 
scenario analysis and Monte-Carlo simulation to more 
complex approaches such as stochastic or robust 



optimization, which include uncertainty within the model 
formulation itself. 

In a review of the related field of energy storage 
expansion planning [8], the authors demonstrate that the 
inclusion of stochasticity in research increased drastically 
after the year 2000. However, the majority of this research 
deals with the more simplistic approaches of scenario 
modelling or Monte Carlo simulation. For papers published 
after 2010, still less than 20% feature the more sophisticated 
stochastic optimization approach to uncertainty modelling. 

In this work we demonstrate the importance of the 
inclusion and careful treatment of uncertainty across all 
relevant dimensions when assessing renewable energy 
policies. In the context of a real-world generation expansion 
planning problem we: 

• Compare the effectiveness of several different renewable 
support policies under different assumptions of 
uncertainty including an emission limit, carbon price, 
renewable generation subsidy, and renewable 
investment grant. 

• Demonstrate the importance of inclusion of uncertainty 
into the model for policy assessment, with many policies 
designed in a deterministic model not achieving target 
levels of carbon reduction when real world uncertainty 
is considered in investment decisions. 

• Demonstrate the importance of including uncertainty 
inside the model (through stochastic optimization). 

II. METHODOLOGY 

The aim of this paper is to compare different treatments 
of uncertainty in a GEP model for policy making. The 
methodology here covers the three important steps in this 
process. Firstly, the means for quantifying input uncertainty 
in a scenario generation and reduction process is outlined. 
Then we detail the GEP model formulation and outline the 
case study used in this analysis. 

A. Scenario Treatment 

We apply uncertainty to three key model inputs: fuel 
prices, energy demand, and renewable technology capital 
and operating costs. For fuel prices and demand it is 
reasonably common to consider these sources of uncertainty 
aleatoric and consider that a stochastic process can be 
considered a reasonable representation (as characterized in 
[2]). For these sources of uncertainty we follow a typical 
scenario generation and reduction approach, as discussed in 
[9] and detailed here in section 1.2.1.  

For technology costs we take a different approach and 
apply equal weights (equal probabilities) to the high, 
medium, and low forecasts developed by the National 
Renewable Energy Laboratory (NREL) [10]. In this way the 
evolution of costs is uncertain but exogenous to the model 
(as opposed to endogenously determined, as in [11]). 
Technology costs can be considered to entail both epistemic 
and aleatoric uncertainty [2] and the application of expert 
judgement to define and assign a weighting to such scenarios 
for modelling is one potential approach, as in [12]. An 
alternative proposed approach is to fit a triangle distribution 
over the range of scenarios as in [13], however, this assumes 
the extreme scenarios represent the limits of potential values 

as opposed to probable potential scenarios. In this paper, we 
use the model to represent the decisions of actors in the 
market, and our treatment of technology costs should reflect 
how we believe they incorporate this information into their 
decisions. While the application of equal weights is an 
assumption, we believe this is a reasonable treatment for the 
question of estimating investors long term views. 

B. Scenario Generation and Reduction 

The basic process for scenario generation and reduction is: 

1. Fit statistical model to historical data; 

2. Generate a range of future scenarios based upon 
statistical model, and; 

3. Reduce the scenario set with a fast forward 
selection methodology. 

For load growth we fit a Geometric Brownian Motion 
(GBM) process as with [14] and for fuel prices we fit an 
Ornstein Uhlenbeck (OU) process typical for commodity 
prices [15]. After fitting the processes to the data, we 
generate 10000 random individual scenarios which provide a 
discrete approximation of the future realizations of each 
series. 

To select a set of inputs for the model we then apply a 
scenario reduction methodology to pick four representative 
scenarios and their relative weights (relative probabilities in 
this case). We use the fast forward selection (FFS) [16] 
technique with the Euclidean norm set as the distance metric 
as often applied to generation expansion problems [9]. 

C. Uncertainty Representation 

For the purpose of this study, we implement a mixed 
integer GEP model with a two stage stochastic optimization, 
a common tool for making energy policy related decisions 
[6]. As the purpose of this study is to include a detailed 
representation of uncertainty, which drastically increases 
problem size, we implement a model formulation designed to 
minimize the problem size in other areas while remaining 
representative. 

We simulate the model under three different 
representations of uncertainty. 

• Deterministic (D): A single deterministic scenario is 
optimized, where demand, fuel prices, and technology 
construction costs take a single value based on the 
expected value of the forecasts developed in the 
previous section. 

• Scenario Average (SA): All possible combinations of 
fuel prices, demand forecasts, and construction costs 
forecasts are simulated as independent scenarios (48 in 
total). Scenario analysis or Monte Carlo analysis, where 
scenarios differ but are modelled independently, is the 
most common method to incorporate uncertainty [8]. 
The investment decisions made here reflect the model 
having perfect foresight for each scenario. When 
modelling a liberalized market or central utility for 
policy making this implies that market participants do 
not take risk or uncertainty into account when making 
investment decisions (as the model is optimized to a 
known future). To generate results for comparison from 
this approach the expected result is taken by multiplying 



the results of each scenario by its probability of 
occurring. 

• Stochastic optimization (SO): When running the model 
as a stochastic optimization problem we force it to make 
a single set of decisions that must be fixed over all 
potential futures for a selected set of years. This reflects 
real world decision making where investors must decide 
to make an investment without knowing what the future 
levels of demand, fuel prices, or construction costs will 
be. In such a situation we tend to see more conservative 
decisions (the investor cannot optimize aggressively to a 
given forecast as this is not certain to occur) and a 
preference to delay decisions for a time where more 
information is known. In [17] the authors show that 
under the assumption of perfect competition the actions 
of individual investors in a competitive market 
oftentimes can be modelled as a centralized least-cost 
generation expansion planning problem, including in the 
general case where investors are making decisions on 
the basis of a stochastic optimization over uncertainty. 

It is important to be clear about the interpretation of the 
stochastic optimization here. One potential application of the 
GEP for the policy maker could be to find the 
decarbonization support policy that is optimal given 
uncertainty (see [18], for an example of optimizing policy 
decisions). Instead here we are investigating the question: 
given that investment decisions are made taking uncertainty 
into account (without the perfect knowledge of the future), 
what then is the expected effect of different decarbonization 
policies?  

D. Expansion Model 

In the remainder of this section we provide a high-level 
overview of the GEP model applied in this study. This model 
is an extension of the model used in [19] to accommodate 
multiple scenarios and non-anticipativity constraints. 

Equation 1 presents a simplified view of the objective 
function of the optimization. Broadly the model attempts to 
minimise the expected value of the total system cost. The 
costs considered include build costs for new units cBuild, 
annual fixed costs for all units cFixed, variable costs cVariable 
which include fuel costs, variable operating and maintenance 
costs, unit start costs, and any carbon price costs. Finally, the 
model allows for penalty costs for violating constraints 
cPenalty, which here includes the cost of unserved energy, cost 
of unserved spinning reserves, and costs to curtail renewable 
generation. 

 
 Of note are the weights and discount factors used in this 

equation. For each scenario 𝑠 ∈  𝑆, a scenario weight 

𝑤𝑠
𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 is applied, representing the probability of that 

scenario occurring (see section II B, for details).  

The model is run with a limited set of representative days 
𝑑 ∈ 𝐷, each having a set of chronological time periods 𝑡 ∈

𝑇, and an associated weight 𝑤𝑑
𝐷𝑎𝑦

 (broadly the number of 

days the 'representative' days is representing) such 

that ∑ 𝑤𝑑
𝐷𝑎𝑦

𝑑∈𝐷 = 365 . Representative days with 

chronological time periods have been shown to be important 
in modelling high levels of renewable penetration [20]. The 
rrepresentative days have been selected based upon the 
approach detailed in [19]. The model includes 𝑝 ∈ 𝑃 power 
plants representing both the existing fleet and potential build 
candidates. 

The discount factors 𝐷𝐹𝑦  and 𝐷𝐹𝑦
𝑠𝑡𝑒𝑝

 are used to 

discount future build and annual costs. In this model only 
every fifth year is included (as a set of representative days) 
but weighted to reflect that it is representing a ‘step’ of five 

operational years with the discount factor 𝐷𝐹𝑦
𝑠𝑡𝑒𝑝

. If we 

assume an annual discount rate of df the annual 𝐷𝐹𝑦   and 

step 𝐷𝐹𝑦
𝑠𝑡𝑒𝑝

 discount factors are calculated as follows: 

 

For full details of the model constraints, the reader is referred 
to [19]. However, the following features are of note: 

• The model enforces integer build decisions to represent 
the fact that, particularly for large conventional units, 
power plants must be constructed in minimum economic 
or technical sizes. 

• When the model is solved as a stochastic program, non-
anticipativity constraints are enforced on the first year of 
build decisions, meaning the model selects the same 
build decisions across all scenarios. These constraints 
reflect the reality that some decisions must be made 
before the uncertainty in inputs is resolved. Effectively, 
planners must optimise their initial build decisions to be 
optimal against the uncertain inputs. 

• In each scenario, in each model year, in each 
representative day, in each hour, the model must meet 
demand with generation (or incur highly penalised 
unserved energy or dump energy). The model enforces 
time period chronology to ensure power plant dynamics 
can be captured. Additionally, the model captures the 
provision of spinning reserves from conventional 
reserve capable power stations. 

• Detailed power station dynamics are captured, including 
start costs and ramping restrictions for conventional 
units. For battery storage units daily energy storage 
constraints ensure that storages generate and charge in a 
feasible manner within each day (the storage of energy 
between days is prohibited due to the restrictions of 
using representative days). 

• The model captures the emission of carbon from power 
station operations and can optionally enforce either a 
price on carbon emissions or a limit on annual carbon 
emissions.  

 
 

(1) 

𝐷𝐹𝑦 = (1 + 𝑑𝑓)−(𝑦−1) 

 
(1) 

𝐷𝐹𝑦
𝑠𝑡𝑒𝑝

=  ∑ 𝐷𝐹𝑖

𝑦 + 4

𝑖= 𝑦

 (2) 



TABLE 1  RENEWABLE SUPPORT POLICY DETAILS AND DESCRIPTION OF MODEL IMPLEMENTATION 

Renewable support policy implementation 2023 2028 2033 

Carbon limit - An annual limit on carbon intensity in each scenario, starting in the second simulation year 2028. The 

policy is implemented as a constraint on annual total emissions, the constrained value depends both on the intensity 

limit and on the realisation of demand in a given scenario. 

None 
250 

g/kWh 

240 

g/kWh 

Carbon price - A price for the emission of carbon borne by the generator. The price on carbon emissions is included 

in the objective function similar to other variable costs. 

10 

$/tonne 

30 

$/tonne 

50 

$/tonne 

Renewable subsidy - A subsidy for renewable energy provided to the system (similar to additional returns from the 

sale of renewable obligation payments). This subsidy should be interpreted as additional to market revenue in a market 

environment (as opposed to a replacement payment such as a feed in tariff). The subsidy is implemented as a negative 

variable cost for new built renewable technologies. 

25 

$/MWh 

25 

$/MWh 
25 

$/MWh 

Renewable grant – A grant towards the capital cost of new renewable technologies (alternatively the grant can be 

considered a tax incentive). This policy is implemented as a reduction in capital costs for renewable technologies. 
450 $/kW 

Solar subsidy - A subsidy targeted to the provision of solar energy provided to the system. The subsidy is 

implemented as a negative variable cost for a new solar power plant.  
80 $/MWh 

Solar grant – A grant towards the capital cost of a new solar power plant. This policy is implemented as a reduction 

in capital costs for new solar power plant. 
1000 $/kW 

 

 
Figure 1 Base case new build results of GEP model under the 

deterministic scenario without the application of any renewable 

support policy. 
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III.  CASE STUDY 

As previously discussed, including such a large number 
of scenarios in a single optimization creates major 
challenges. 

We therefore select a case study where we can minimize 
the problem size while still drawing representative results. 
For this exercise we model the island of Terceira in Portugal 
which has several characteristics that are useful here. Firstly, 
it is a small isolated system (effectively a microgrid), 
however, energy demand is growing and future investment in 
generation capacity is required. The island also features a 
relatively high level of variable renewable penetration which 
currently results in occasional curtailment actions making it 
representative of the high renewable generation systems of 
the future. The model selects between four representative 
technologies in 5MW increments: small scale diesel engines, 
Li-ion storage, PV solar, and small-scale onshore wind. 

A. Decarbonization / Renewable Support Policies   

Here we include six different common decarbonization 
support policies for assessment under different assumptions 
about uncertainty, as detailed in Table 1. The values for the 
carbon policies are set in such a way as to achieve the same 
target carbon limit in the deterministic case for all policies. 
This provides an equal basis on which to compare policies 
under the inclusion of uncertainty. 

IV. RESULTS 

In Figure 1 we provide the expected capacity expansion 
plan selected by the GEP model without any decarbonization 

support policy under the three treatments of uncertainty (D, 
SA, and SO). 

Firstly, it is interesting to note that under all three 
treatments the expansion plans are relatively similar. The 
first year is of the most interest as this is the year where the 
stochastic optimization selects decisions under uncertainty 
(the non-anticipativity constrained year). When comparing 
the deterministic and scenario average results for this year, 
we see that diesel and solar power are selected in only a 
subset of scenarios, so that on average, the quantity is less 
than one full 5MW unit of either (if we were to round to the 
nearest unit, the scenario average result and the deterministic 
result would be the same here). 

Comparing then to the stochastic optimization solution, 
we see that even though the diesel generator is only needed 
in a select few scenarios, we would expect that a centralised 
planner or a perfectly competitive market would build this 
generator if fully considering uncertainty as a stochastic 
optimisation. In practice, this means that the upside in the 
relatively few scenarios outweighs the downside in thee 
majority of others. This result demonstrates the first situation 
where a policy maker would incorrectly derive results from 
models that do not account for market participants taking 
into account uncertainty. Based on a deterministic, or 
scenario average, view of the market the policy maker may 
conclude that it is unlikely that any new conventional 
generation will be built, and perhaps delay decarbonization 
policy, where this does not reflect the view of the more 
sophisticated SO model. 

Figure 2 demonstrates the change in expansion plan in 
the first model year (2023) for each decarbonization support 
policy, as assessed by the model under the three different 
treatments of uncertainty. The first difference to note is that 
the deterministic model does not result in the emission limit 
or emission price policies affecting any change in this first 
model year. In contrast, the stochastic optimization model 
finds that, in fact, these policies would increase the build of 
solar. A simplistic treatment of uncertainty as in the scenario 
average model is also unlikely to lead the policy maker to 
detect this effect, the SA results suggesting that instead wind 
capacity would be built. Here, the simplified treatment of 
uncertainty could lead the policy maker to underestimate the 
short-term effect of these policies (keeping in mind that the 
carbon reduction target is for the second model year 2028). 

While results for the deterministic and stochastic 
optimization models are relatively similar for the renewable 
grant and subsidy policies, the scenario average differs 



 
(a) Deterministic 

 
(b) Scenario Average 

 
(c) Scenario Optimisation 

Figure 2 Change in build of new units in 2023 model year after the 

implementation of renewable support policies under different treatments 

of uncertainty. 
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Figure 3 Carbon intensity levels in 2028 model year for all scenarios under 

different carbon support policies and treatments of uncertainty (D 

deterministic, SA scenario average, SO stochastic optimisation). Expected 

carbon intensity shown in red. 

 

Figure 4 Carbon abatement costs (change in total system costs resulting 

from renewable support policy / reduction in emissions) for all renewable 

support policies and treatments of uncertainty. 
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significantly. In this case, improving the treatment of 
uncertainty, by running scenarios, but not including how the 
market responds to this uncertainty, reduces the policy 
makers' ability to evaluate policy, overestimating the build of 
wind over solar, and underestimating the required storage 
technology and additional capacity overall. Finally, focusing 
on the solar specific support policies, the deterministic and 
scenario average models both underestimate the requirement 
of storage (in some scenarios, without demand growth, if a 
large amount of solar is built, this storage is required 
(economic), a situation only capture by the SO model). This 
increased need for storage increases the build cost associated 
with these policies and could lead the policy maker to 
understate the cost of these policies overall. 

Finally, in Figures 3 and 4 we present the effectiveness of 
the policies at reducing carbon emissions to reach the target 
carbon intensity level and the costs associated with doing so, 
respectively. While all policies achieve the target emission 
intensity level in the deterministic case of 250 g / kWh, when 
uncertainty is incorporated into the model, this is not 
necessarily the case.   

The one policy that achieves the target (or close to it) is 
the carbon limit, which applies to all scenarios. In other 
words, investors make build decisions to meet this limit 
regardless of the outcomes of the uncertain inputs. With all 

the other policies the investors decisions depend on the costs 
and benefits of the different technologies (given 
decarbonization support), but in several scenarios this does 
not result in a strong enough incentive to reduce carbon 
emissions below the given limit. Even the expected carbon 
intensity (given that some scenarios will be over and some 
under) is not achieved by the policies designed in the 
deterministic model. In the worst case this results in an 
expected 6.1% violation of the emission target and 42% 
violation in the worst scenario. 

The use of over simplified uncertainty in the form of the 
SA case leads to the overestimation of the degree to which 
this target is will not be met on average (and the maximum 
degree to which it is violated). This results from the build 
decisions demonstrated in Figure 2, where looking at 
scenarios individually the model perfectly optimizes to the 
known future, in many scenarios building less renewables 
compared to the stochastic optimization. The stochastic 
optimization reflects the result of market decisions made 
considering uncertainty where renewable investments are 
made, and exist in all scenarios, meaning more renewables 
persist into the future and lower carbon emissions in 
scenarios where they would nothave been built if the future 
was foreseeable (for example, low fuel costs and high 
renewable costs). 

In Figure 4, we compare the expected costs of the 
policies under different model treatments of uncertainties. 
For the purpose of these comparisons, subsidy costs / carbon 
revenues are accounted for to ensure an applicable 
comparison. When looking at the deterministic results all 
policies not directly targeted at solar seem to have very 
similar costs, and only the subsidies limited to the solar 
technology have higher costs. However, when we 



incorporate uncertainty this result changes. In particular, the 
carbon limit is significantly more expensive, with costs over 
two times higher, as it enforces sufficient changes to meet 
the target over all scenarios, where the other renewable 
agnostic scenarios are relatively cheaper. These results 
reinforce the fact that a carbon limit provides greater 
certainty around emissions, where a carbon price produces 
greater certainty around costs. Additionally, only with the 
inclusion of uncertainty do we find differences between the 
subsidy and grant based renewable policies. For the model to 
gain the benefits of the subsidy, the renewable units need to 
be able to produce. This means that these policies result in a 
higher use of storage as opposed to diesel units. While this 
effect is not picked up in the deterministic case, it is found in 
some of the scenarios where different cost or demand 
conditions mean that there exists a difference between 
storage and diesel generation economic viability. 

V. CONCLUSION 

Investment decisions in the energy sector involve large 
sums of money and require return over long periods of time. 
Moreover, these decisions are complicated by the large 
amount of uncertainty inherent in the forecasts of inputs that 
are important to making these decisions. In this work we 
investigated the importance of representing uncertainty in the 
modelling used to evaluate different decarbonization 
policies.  

We find that the six policies compared are roughly 
equivalent when evaluated with a deterministic model but the 
expansion plan, decarbonization, and cost, all differ 
significantly when uncertainty is included inside the model. 
The cost of the carbon limit policy, the most economical 
when assessed deterministically, more than doubles when 
uncertainty is taken into account. 

We find that the five other policies considered; carbon 
price, renewable subsidy, renewable grant, solar subsidy, and 
solar grant, not only do not achieve the target carbon 
intensity level in all scenarios, but also not in expectation 
(the expected carbon intensity is greater than the target). 
Additionally, we find the renewable subsidy and grant 
policies to be roughly equivalent deterministically but 
different under more sophisticated treatments of uncertainty, 
with the grant policies being more expensive in carbon 
abatement terms than the subsidies. 

Finally, we demonstrate that the simplified inclusion of 
uncertainty, such as scenario analysis or Monte Carlo 
simulation often overestimates the violation of policy targets 
and underestimates costs. 
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