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Abstract—With multiple energy sources, diverse energy 

demands, and heterogeneous socioeconomic factors, energy 

systems are becoming more and more complex and 

multifaceted. Therefore, it is also becoming more and more 

challenging to improve the efficiency, security and 

sustainability for such complicated systems. To address 

these challenges, we propose a general optimal dispatch 

model for integrated energy systems. Two interesting and 

challenging decisions of any such model is how it takes 

power curves of equipment into account and how it deals 

with nonlinearity. We use a Gaussian Process (GP) to 

estimate the dynamic power curves, and then we linearize 

the nonlinear program using special ordered sets of type 2 

and solve it using CPLEX. To demonstrate the practicality 

of the proposed approach, we combine real world and 

simulated scenarios to perform extensive experiments.  

Keywords—Virtual integrated energy system, renewable 

energy, MILP, optimal dispatch model, dynamic power curve 

I. INTRODUCTION  

Energy is the basis for human survival and a prerequisite for 

social development and progress. In recent years, with the 

promotion of concepts such as integrated energy systems 

and energy internet, the energy industry is evolving towards 

improving efficiency, security and sustainability [6] [7]. 

One way to study energy systems is to look at it from 

the optimal dispatch (OD) point of view, answering the 

question of what combination of energy supply should be 

used in order to satisfy the demand, under operational 

constraints, and optimizing some objective(s). The OD 

problem is usually formulated as a mixed integer nonlinear 

program (MINLP), in which the different types of optimal 

objectives and constraints are defined. The objectives can 

be single- or multi-objective [11]–[14], and the constraints 

can include energy balance constraints, ramp rate 

constraints, equipment constraints and so on [15]–[17]. The 

MINLP could be solved by a deterministic method [19]–

[21], or a stochastic method such as Particle Swarm 

Optimization (PSO) or Genetic Algorithms (GA) [22] [23]. 

In this paper, we propose an optimal dispatch model of 

an integrated energy system. We apply a Gaussian Process 

(GP)[25] [26] to model the dynamic power curve of 

equipment, and then linearize the resulting mixed integer 

nonlinear program using special order sets of type 2 

(SOS2), and solve the resulting linear program. In order to 

study arbitrarily complex integrated energy systems, we 

combine actual and simulated scenarios, set appropriate 

baselines, and analyze the resulting virtual system, thus 

showing the efficacy of our approach. The proposed 

dispatch model can be applied to planning, operations and 

dispatch, as well as energy trading. 

GP is a non-parametric Bayesian method commonly 

used to model a complex nonlinear system robustly. Prior 

applications of GP in energy research include [18], who use 

GP to express the nonlinear power curve of wind turbines 

for equipment monitoring; [36], who use GP for forecasting 

the power load; and [37], who use GP to propose some 

models for the prediction control of power systems. Here 

we use GP to model the equipment input/output constraints 

of a dispatch problem. GP is well suited for this application 

for the following reasons. First, it is robust and not prone to 

over-fitting plaguing parametric methods. Second, it 

supports online learning and deals with uncertainty, which 

is ideal for reflecting the complicated and dynamic 

input/output relation of equipment. Third, it can capture the 

changes in equipment efficiency as it depreciates. Finally, 



 

since it is a non-parametric Bayesian method, it can express 

the power curve of all equipment uniformly, instead of 

having to build one model per equipment like parametric 

methods. 

We apply our method to the example of combining an 

actual photovoltaic plant, an actual combined heating and 

power station, and a set of simulated storage batteries. As 

mentioned above, we convert each nonlinear relation with 

the constraints into linear form using SOS2, and solve the 

model using CPLEX. The results show that we can 

effectively take the variability of renewable energy into 

account in an integrated energy system, and achieve the 

optimization of heating and power scheduling. 

The remainder of this paper is organized as follows. 

Section II describes the proposed optimal dispatch model 

and describes how to use GP to model the dynamic power 

curve of equipment. Section III presents the example, and 

analyzes the results. The conclusions and future work are 

described in Section IV. 

II. OPTIMAL DISPATCH MODEL 

The model considered here describes the coordination 

and cooperation of different equipment in an integrated 

energy system in order to optimize the efficiency of energy 

utilization. We will later apply this general model to a 

virtual integrated energy station (see Figure 2). 

 
List of symbols 

P                   Power 

Q                  Quantity of a certain raw energy 

C                  Selling/purchasing price 

R                 Rewards for using a specific type of energy 

L                 User loads 

F                 On-off state variable, either 0 or 1 

D                On-to-off state variable, either 0 or 1 

U                Off-to-on state variable, either 0 or 1 

T                Number of time periods 

t                 A certain time period t = 0, … , T - 1 

N               Number of equipment types 

n 𝑖              Number of units for i-th equipment type 

Subscripts 

ge             Gas engine 

hrsg          Heat recovery steam generator 

chp           Combined heating and power 

gsb           Gas steam boiler 

pv            Photovoltaic 

wg           Wind generator 

stg           Storage 

u             User 

s             Source 

i, j          The i-th type j-th unit equipment 

a → b     Indicates an energy flows in a pipeline from a to b 

Superscripts 

e               Electricity energy 

c              Cooling energy 

st             Hot steam energy 

sm           Hot smoke energy 

g             Gas 

oo           On-off 

ou           Start-up 

od          Shut-down 

in/out    Input or output of a certain energy to an equipment 

A. Model Objective 

The model built here can deal with different objectives. 

Here we give the example of the maximization of profit, the 

total revenue minus total costs. The total revenue at the t-th 

time period is from selling hot steam to users and electricity 

to both users and the local grid: 

    (1) 

The total costs at t-th time period is: 

Materials costs:  𝐶𝑠
g,out[𝑡]∙Q𝑠

g,out[𝑡]+C𝑠
e,out[𝑡]∙P𝑠

e,out[𝑡] 

On-off costs:  ∑ ∑ 𝐶i,j
oo[𝑡]∙Fi,j[𝑡]

𝑛𝑖
j=1

𝑁
i=1  

Start-up costs: ∑ ∑ 𝐶i,j
ou[𝑡]∙Ui,j[𝑡]

𝑛𝑖
j=1

𝑁
i=1  

Shut-down costs: ∑ ∑ 𝐶i,j
od[𝑡]∙Di,j[𝑡]

𝑛𝑖
j=1

𝑁
i=1  

In additional to revenue and cost, bonus will be rewarded 

for using renewable energy in the first place - this can 

represent the direct incentives of using renewable energy, or 

be used to internalize the environment benefits of renewable 

energy. In summary, the profits over all T time periods is 

total revenue minus total cost plus total rewards, or:  

∑(

𝑇−1

t=0

 

−𝐶𝑠
g,out[𝑡]∙Q𝑠

g,out[𝑡] − 𝐶𝑠
e,out[𝑡]∙P𝑠

e,out[𝑡] 

− ∑ ∑ 𝐶i,j
oo[𝑡]∙Fi,j[𝑡]

𝑛𝑖

j=1

𝑁

i=1

 

− ∑ ∑ 𝐶i,j
ou[𝑡]∙Ui,j[𝑡]

𝑛𝑖

j=1

𝑁

i=1

 

− ∑ ∑ 𝐶i,j
od[𝑡]∙Di,j[𝑡]

𝑛𝑖

j=1

𝑁

i=1

 

 +Rpv[𝑡]𝑃pv
e,out[𝑡]+Rwg[𝑡]𝑃wg

e,out[𝑡]),         (2) 

which is an objective to be maximized in the integrated 
energy system. 

B. Constraints of the Model 

The constraints that our model considers can be 

divided into several categories, depending on what is relates 

to: startup-shutdown, equipment and operation specific, 



 

source and user, and connection.  

In the following subsections, we describe in detail only 

a small subset of those constraints. 

1)   Startup-Shutdown Constraints: For most equipment, 

it is necessary to consider the cost related to its startup-

shutdown transitions. For example, here we explain the 

startup-shutdown constraints for CHP. The same goes for the 

rest of the equipment. All state variables of a CHP over T 

time periods must satisfy the following conditions: 

 0=Fchp[0] − 𝐹chp
0 − 𝑈chp[0]+Dchp[0],            (3) 

0=Fchp[i+1] − 𝐹chp[𝑖] − 𝑈chp[i+1]+Dchp[i+1] 

for i=0, ⋯ ,T − 2,                         (4)                     

1 ≥ 𝐷chp[𝑖]+Uchp[𝑖]  for i=0, ⋯ ,T − 1,        (5) 

where 𝐹chp
0 , taking value either 0 or 1, denotes the initial on-

off state before t = 0. 

2)   Gas Engine Constraints: Gas engine (GE) consumes 

natural gas and converts its chemical energy into electricity, 

while producing hot smoke. The energy of hot smoke can 

be utilized a second time by a heat recovery steam generator 

(HRSG) to generate hot steam for the user. Here we assume 

that the maximum and minimum power of a gas engine are 

denoted by 𝑃𝑔𝑒
𝑚𝑎𝑥and 𝑃𝑔𝑒

𝑚𝑖𝑛
 respectively, and electricity-heat 

ratio by 𝑟𝑔𝑒 , then we have: 

F𝑔𝑒[𝑖]𝑃𝑔𝑒
𝑚𝑖𝑛 ≤ 𝑃𝑔𝑒

𝑒,𝑜𝑢𝑡[𝑖] ≤ 𝐹𝑔𝑒[𝑖]𝑃𝑔𝑒
𝑚𝑎𝑥              (6) 

𝑃𝑔𝑒
𝑠𝑚,𝑜𝑢𝑡[𝑖]=𝑟𝑔𝑒𝑃𝑔𝑒

𝑒,𝑜𝑢𝑡[𝑖], for i=0, ⋯ ,T − 1         (7) 

For an equipment, its input and output should satisfy a 

certain relation, which is often unknown beforehand. 

Suppose we have that 

𝑄𝑔𝑒
𝑔,𝑖𝑛

[i]=𝑓𝑔𝑒(𝑃𝑔𝑒
𝑒,𝑜𝑢𝑡

[i])  for i=0, ⋯ ,T − 1,         (8) 

where 𝑓𝑔𝑒(. ) represents a certain relation between 𝑃𝑔𝑒
𝑒,𝑜𝑢𝑡

 

and 𝑄𝑔𝑒
𝑔,𝑖𝑛

. One common way to obtain is to apply 

polynomial-fitting techniques. However, the nonlinearity of 

the equipment input/output relation makes the problem 

difficult to solve. Therefore we use special ordered set of 

type 2 (SOS2) [32]–[34] to specify integrality conditions 

and approximate the nonlinear relation by piece-wise linear 

relations, thus converting the nonlinear programming 

problem into a linear one. 

 

C. Power Curve Estimation 

A key part in the model is the relation between input and 

output of an equipment, which is usually represented as a 

power curve. A power curve, a set of functions to describe 

thermal efficiency, fuel mass flow rate, energy recovered 

from the water jacket, and exhaust gas enthalpy, is usually 

expressed in terms of a variable partial load (PL). PL is the 

running load as a percentage of nominal load and reflects 

the relation between PL and energy efficiency. All of these 

data are required for setting constraints of equipment in the 

MINLP model. 

1)   Power Curve Modeling: Studies referring to [30] 

express the conversion of energy as coupling matrix and 

regard the efficiency of equipment as constants. Others use 

a parametric regression method such as a linear or 

polynomial function to model a power curve. Both 

approaches have their shortcomings. First, a power curve is 

a variable function of PL, not a constant. Second, if we take 

the valve point effect into consideration, a power curve is 

non-convex and not smooth. A simple parametric method 

can not model such complicated data well. A complex 

parametric method might fit the model better, but it is prone 

to over-fitting. Lastly, there are dozens of equipment in an 

integrated energy system, and they can not be modeled by 

one or several uniform parametric models. 

Also, the power curve of equipment is not static but 

dynamic during the entire lifetime period and depends on 

the environment. 

Based on the above discussions, a power curve model 

should have the following characteristics: 

∎ Robust and not prone to over-fitting. 

∎ Support online learning and deals with uncertainty. 

∎ Be able to model the power curve of all equipment 

uniformly. 

In this paper we adopt the GP Regression model to 

estimate the dynamic power curve. 

2)   Gaussian Process for Power Curve Regression: A 

Gaussian Process (GP) is a Bayesian, non-linear machine 

learning method. We use GP to solve the probabilistic 

regression and classification problems [25] and define p(f ) 

as a distribution over functions by GP. 

A GP is parameterized by a mean function, 𝑢(𝑥), and a 

covariance function 𝐾(𝑥, 𝑥′ ). For 𝑥, we obtain the 

expression of GP as follow: 

        𝑓(𝑥)=GP(𝑢(𝑥),𝐾(𝑥, 𝑥′ )).                       (9) 

For more information about GP, refer to [31]. 

   Assuming we have a data set D of n observations, where 

D= {(𝑥𝑖,y𝑖
)

i=1

𝑛
} = (x,y), captured by equipment sensors, 

where x represents PL (partial load), and y represents 

energy efficiency, we have the following regression model 

[38]: 

  𝑦𝑖=f(𝑥𝑖)+ε𝑖                                        (10) 

  f～GP(∙ |0, K)                                      (11) 

  𝜀𝑖～N(∙ |0, 𝜎2)                                    (12) 

If the prior on f is a GP, likelihood is Gaussian, then the 

posterior on f is also a GP.  

 𝑝(y∗|𝑥∗,D) = ∫ 𝑝(y∗|𝑥∗, f, D)𝑝(𝑓|D)df           (13) 

𝑥∗ could be any value in the PL domain, y∗ is the 

corresponding predicted value of the energy efficiency. 
(x,y) represents the power curve which can be sequentially 

learned by Gaussian process regression model. 

To obtain the latest power curve of the equipment, we 

update the GP model as follows. First we train the model 

using the initial data set, and obtain the kernel function and 

its parameters, with which the power curve can be modeled. 

Then, when new data comes in, the model can be retrained, 

and the updated power curve based on the retrained GP 

model is then used in the optimal dispatch model. 

3) Results & Analysis of Gaussian Process: In this part, 

we analyze the effectiveness of the GP model on real data 

captured from a GSB with a maximum load of 10 tons, by 

comparing it with several parametric methods including 

spline interpolation and polynomial fitting on the GSB 

dataset which contains 96 samples. The regression of high 

degree is prone to over-fitting, therefore we select the 

polynomial regression of degree 1, 2 and 3, and the spline  



 

Algorithm RMSE Algorithm RMSE 

GPR 0.001198 1 degree polynomial 0.001641 

1 degree spline  0.001373 2 degree polynomial 0.001604 

2 degree spline 0.002855 3 degree polynomial 0.001262 

TABLE I: Results of different algorithms 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1: Power Curve of GSB 

 

regression of degree 1 and 2 to compare. We equally and 

randomly divide data into 3 parts, and then use the 3-fold 

cross-validation to evaluate the performance of the Gaussian 

Process Regressor and the selected methods.   

We use Bayesian optimization to perform model 

selection and hyperparameter inference, by which we find 

that the Radial Basis Function (RBF), RBF(length scale 

bounds=(1,1e3)) with noise level α of 10−8
 achieves the 

best performance. When using these algorithms for 

comparison, we first get an interpolation or fitting model on 

the training set, then apply the model to the test set. Table I 

presents the root mean squared error (RMSE) of these 

algorithms. 

From Table I, we can see that GPR performs better than 

the interpolation and fitting methods. The GPR also gives 

the uncertainty of the prediction which is shown by the 

confidence intervals in Figure 1 from which we can observe 

most of the ground-truth values are within the 95% 

confidence interval (CI) region, and the uncertainty of the 

prediction is not fixed. 

The prediction in the region with less observations has 

more uncertainty, and when we obtain more observations in 

the corresponding region the uncertainty decreases. The 

experimental results demonstrate that GPR is an appropriate 

method for power curve modeling and can obtain better 

performance than many traditional parametric methods. 

D. Solution of the Model 

Above all, the optimal dispatch of an integrated energy 

system boils down to a nonlinear optimization problem, 

with the nonlinearity due to the nonlinearity between the 

inputs and outputs of equipment. We use a technique called 

special ordered set of type 2 (SOS2) [32]–[34] to convert 

the nonlinear relationships between inputs and outputs into 

linear relationships, and then the problem becomes a mixed 

integer linear programming, which can be solved by using 

optimization software such as CPLEX. 

III. RESULT & ANALYSIS 

In this section, we apply our model to the example of 

combining an actual combined heating and power station 

(station A in Figure 2), an actual photovoltaic plant (station 

B in Figure 2), and a set of simulated storage batteries. The  

 

 

 

 

 

 

 

 

 

 

 
Fig. 2: Virtual integrated energy system 

results show that we can effectively take the variability of 

renewable energy into account, and achieve the 

optimization of heating and power scheduling.   

The depreciation expense and efficiency loss cost of 

batteries was considered to be 0.3 yuan/kWh. 

In our experiments, external power grid acts as both a 

seller and buyer of electricity, at the prices listed in Table 

II. 

 

A. Comparison and Analysis 

   1)   Comparison of virtual integrated energy system with 

baseline: Here we use the independent operation of A and B 

as the baseline, and compare the gross profit of the virtual 

integrated energy system with this baseline. The increase of 

gross profit is presented in Table III, in yuan, the unit of 

Renminbi. We use the actual data of user load and power 

production from a randomly chosen date. Analysis of other 

days yield similar results. For simplicity, here we only show 

the results of optimal dispatch related to electricity. 

In case 1, A and B stations are independent and there is 

no storage. This is the actual case today and forms the 

baseline of our comparison, with gross profit of 43555 

yuan/day. In this case, station A relies on the grid for 

electricity when its output is insufficient to meet the 

demand. B sells all the electricity generated to the grid, and 

so in this case we will not show B in the dispatch analysis. 

See the first part of Figure 3, the positive y-axis is the 

electricity supply (in this case, purchased from grid, CHP1 

or CHP2 generated; again, note that in this case the PV 

generated is excluded from the figure because B sells all the 

electricity generated to the grid), and the negative y-axis is 

the electricity demand (in this case, end user demand). 

In case 2, A and B stations are integrated together as if it 

is one energy system, and they are optimized together, 

resulting in a gross profit of 45037 yuan a day, an increase 

of 3.40% over the baseline. This shows that there is value in 

optimizing the integrated energy system, even without 

storage. In particular, in this case, A’s reliance on the grid is 

decreased by the presence of B’s PV solar generated 

electricity. Surplus electricity can still be sold to the grid. 

See the second part of figure 3, the positive y-axis is the 

electricity supply (in this case, purchased from grid, CHP1 

or CHP2 generated, or PV generated), and the negative y-

axis is the electricity demand (in this case, end user 

demand, or selling back to the grid). 

In case 3, we consider storage in the integrated energy 

system, resulting in a gross profit of 45736 yuan a day, an 

increase of 5.01% over the baseline. The comparison results 

show that when the electricity price is low, the storage 

devices store the surplus energy instead of selling to the  



 

Time Sell to grid Purchase from grid 

00:00 - 08:00 0.38  0.41 

08:00 - 12:00 0.5 0.65 

12:00 - 21:00 0.7 1.0 

21:00 - 24:00 0.38 0.41 

TABLE II: Power price tariff 

 

 Gross profit 

(yuan/day) 

increase wrt 

Case 1 

Case 1: Independent and no storage 43555 - 

Case 2: Integrated and no storage 45037 3.40% 

Case 3: Integrated and with storage 45736  5.01% 

TABLE III: Comparison of gross profit 

grid. For example, see Figure 3, at 12pm, the CHPs 

generates more electricity than the demand, so the surplus is 

stored in the storage. Compared to case 2, this shows that 

storage plays an important role in balancing the tiered 

pricing. See the third part of Figure 3, the positive y-axis is 

the electricity supply (in this case, purchased from grid, 

CHP1 or CHP2 generated, PV generated, or storage 

discharge), and the negative y-axis is the electricity demand 

(in this case, end user demand, selling). 

  2)   Energy Market Prices: Here we analyze case 3 

further to see how the operation scheduling of the integrated 

energy system changes as pricing changes. We propose a 

term called ’profit index’, which denotes the net profit of an 

equipment for producing one unit electricity power (kWh). 

The net profit is calculated by subtracting raw material 

costs and levelized cost of electricity (LCOE) from the 

revenue when producing electricity of one kilowatt hour. 

For instance, when the CHP generates one kilowatt hour 

electricity power, a large amount of hot steam power is also 

produced at the same time. Based on the electricity-steam 

ratio 𝑟𝑐ℎ𝑝, we know the total revenue is equal to 𝐶𝑢
𝑒,𝑖𝑛 ∗ 1 +

𝐶𝑢
𝑠𝑡,𝑖𝑛/𝑟𝑐ℎ𝑝. Assume that the natural gas produces electricity 

power for one kWh is 𝑄𝑐ℎ𝑝
𝑔,𝑖𝑛

, we obtain the formula for 

calculating the ’profit index’ of a CHP,   

𝐶𝑢
𝑒,𝑖𝑛 ∗ 1 +

𝐶𝑢
𝑠𝑡,𝑖𝑛

𝑟𝑐ℎ𝑝
− 𝑄𝑐ℎ𝑝

𝑔,𝑖𝑛
∙ 𝐶𝑠

𝑔,𝑜𝑢𝑡
− 𝐿𝐶𝑂𝐸𝐶𝐻𝑃 .    (14) 

Applying (14) to our scenario, we get the profile index, for 

more details, see TABLE IV. Knowing the profit indices of 

equipment in the integrated energy system, we can 

anticipate that during off-peak periods, we should purchase 

electricity from the grid and either sell it directly to 

consumers or store it in the storage battery. However, 

during the mid-peak and on-peak periods, using electricity 

from the storage and two CHPs will be our first priority 

since their profit indices are much higher than that of on-

peak purchasing from grid. Furthermore, if the LCOE of the 

storage increases by 0.05 yuan, which makes its profit index 

less than that of on-peak, the integrated energy system will 

not use the storage battery at all. An interesting fact we can 

observe is that when the price we purchase from grid in off-

peak periods increases by more 

 

CHP1 

CHP2 

Storage 

0.1093 ∼ 0.1712 

0.0774 ∼ 0.1269 

−0.3236 

Off-peak 

Mid-peak 

On-peak 

0.2543 

0.016 

−0.3618 

TABLE IV: Profit indices of some key equipment vs purchasing from grid 

 

Fig. 3: Optimal Dispatch, Cases 1-3 
 

Fig. 4: Operation under profit index 
than 0.08 yuan/kWh, the CHPs start operating. All 

phenomena, obtained by comparing their profit indices, can 

be validated from our experiments. Figure 4 shows the 

optimal dispatch of electricity of the integrated energy 

system, from which we can find that the first CHP should 

keep operating after 9pm, after the grid increases its 

electricity price. For the objective of max profit, the model 

will always prioritize using the equipment which has the 

highest profit index.  

IV. CONCLUSIONS AND FUTURE WORK 

In this paper we propose an optimal dispatch model of an 

integrated energy system, where equipment are modeled 

using a dynamic power curve based on Gaussian Process. 

We design experiments for studying arbitrarily complex 

integrated energy systems, by combining actual and 

simulated scenarios, setting appropriate baselines, and 

analyzing the resulting virtual system. 

The results obtained were analyzed from three aspects, 

which are minimizing costs, improving performance and 

adopting the change of price. The analysis indicates that the 

model of integrated energy system has an important role in 

evaluating and increasing the use of sustainable energy and 

technologies. 

We plan to replace the historic data of load (steam and 

power) used here with a prediction model, and perhaps 

obtain a relationship between the uncertainty of the 

prediction model used and the uncertainty of the 

optimization result. We also plan to extend our model to 

cover more types of energy inputs, models of different types 



 

of equipment and coupling amongst them, and more diverse 

energy demands. In such a scenario, we anticipate that the 

results would be even better, since there are a lot more 

synergies that are possible. This would also allow us to see 

if our model is computationally feasible or not, and allow us 

to further fine tune the model. Also, we can extend our 

current work to study security and sustainability. 

Although the equipment power curve model discussed in 

this paper is for equipment, it can easily be generalized to 

an energy hub which takes integrated energy as input and 

output [27] [29] [30]. When we generalize the Gaussian 

process regression to the energy hub model, the model is 

not just a power curve but a hyper-surface in the high 

dimensional space. An energy hub can be seen as a super 

equipment containing multiple equipment. 
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