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Fig. 1. The confluence of autonomous, electric and networked (situational 
aware) vehicles. 
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Abstract—A variety of energy-saving concepts that 
exploit the special characteristics of electric drives are 
introduced. The confluence of three emerging concepts in 
transportation, namely electric drives, autonomous driving, 
and networked vehicles, enables the optimization of 
transportation efficiency in a way that drastically changes 
modern transportation, especially for passenger and 
commercial road vehicles. The paper addresses both, urban 
as well as highway driving situations and the associated 
optimization problems. It is shown that if the only term in 
the cost function is transportation energy, and all other 
conditions are formulated as constraints, quite substantial 
energy cost reductions are possible. Exploiting weather and 
environmental conditions is another important topic that is 
analyzed. The paper illustrates key ideas via several 
simulation examples.   
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I. INTRODUCTION 
Worldwide, a substantial part of emissions and 

consumption of fossil fuels originates from transportation 
[1]. Moving to alternative non-fossil fuel based 
transportation is a promising avenue, especially if the energy 
comes from solar, wind, nuclear or hydropower. In the 
future, the usage of electric drives can play a major role in 
transportation applications, especially in densely populated 
urban areas [2], even though acceptance is slower than 
originally expected. There are immense opportunities in the 
improvement of transport efficiency when one combines 
electric drives with autonomous operations and networked 
vehicles with situational traffic awareness. This paper 
outlines some of the opportunities arising from the combined 
application of these three concepts.  

There has been a vast amount of work in the area of 
“green driving”, i.e., optimizing efficiency by changing the 
way vehicles are driven [1]–[5]. This includes choosing the 
engine operating point in a particular way, minimizing speed 
changes, communicating with the traffic infrastructure to 
minimize the number of stops, just to name a few. 
Optimizing vehicle operating points only works if the driver 
is willing and able to execute the optimal algorithm or at 
least the set of rules that ensure efficiency gains. Therein lies 
a big opportunity for future vehicles: Self-driving capability 
ensures that an exact execution of a desired speed trajectory 

can be performed with close to zero error, and the networked 
vehicle concept enables transmission of situational traffic 
awareness data, see Fig. 1. We will illustrate in this paper, 
that applying these two concepts to electric drives can 
generate enormous energy savings. This is due to some 
special properties of electric drives that will be explained in 
the following sections.  

This paper is structured as follows: In section II, the 
fundamental models for power flow and optimization are 
introduced. Section III discusses and illustrates the 
sensitivity of e-drives to environmental and weather 
conditions, which can be exploited to reduce energy 
consumption, as shown in section IV. Section V addresses 
the problem of energy optimal stop to stop trajectory as they 
occur in urban and suburban situations. Urban e-platoons and 
their potential for efficiency optimization are presented in 
section VI. Finally, section VII presents conclusions and an 
outlook on how to realize the presented concepts over time. 

II. POWERTRAIN AND OPTIMIZATION MODELS 
Two types of models are presented in this section: A 

powerflow model for characterizing energy expenditures and 
several optimization models to be used later for minimizing 
transportation energy at the source. 

A. Energy and Power Model 
The powerflow in the electric powertrain and the balance 

of forces acting on the vehicle are shown in Fig. 2. Based 
on [6], the corresponding power balance equation, without 
hill-climbing, is shown in (1). The power at the wheel is 
denoted as Pwheel, the mass, speed, acceleration, frontal drag 
coefficient, and cross-sectional area of the vehicle are 
denoted by m, v(t), v̇(t), Cd, and A, respectively. The vehicle 
mass also models and includes the driveline inertia, which 
appears as a constant additional mass contribution, i.e., a 
single gear transmission is assumed [7]. The air density is 



 

Fig. 2. Powerflow model in an electric drive. 

 

Fig. 3. Energy vs. time optimization. 

 
(a)                                                   (b) 

Fig. 4. Efficiency maps for an (a) ICE engine powertrain and an (b) 
electric drive. 

 

 

 

 

 
 (a)                                                         (b) 

Fig. 5. Power sensitivity with respect to the different variables. 

denoted by ρ, fr is the coefficient of rolling resistance, and g 
is the gravitational acceleration. 

The power flow equation for forward motion and reverse 
power flow, is given by (2): 

where Pbat(t) is the power at the battery, ηfrw(T,ω) is the 
vehicle’s efficiency for forward power flow, ηreg(T,ω) for 
reverse power flow, T is the torque of the motor, and ω its 
the rotational speed. These efficiencies represent the 
complete powertrain efficiency, including the mechanical 
drivetrain, and battery efficiency which, as shown in [8], 
have little variations under different operating conditions.  

B. The Optimization Models 
Fig. 3 illustrates the two fundamental optimization 

formulations; the minimization of energy with time as a 
constraint and its dual case, i.e., minimization of time with 
energy as a constraint. In the depicted formulation, E0 and t0 
are energy and time constraints respectively. vll and vlu refer 
to additional speed constraints. 

As shown in [9], in order to minimize the energy 
consumption of an EV for a specific traffic segment with a 
desired average speed one can formulate the following 
optimization problem. Constraints are average speed vavg, 
covered distance x, acceleration v̇max, and jerk v̈max limits: 

where Pbat(τ) is given by (2), tf is the total time of the 
optimization, v̇min and v̇max are the minimum and maximum 
acceptable acceleration values, and v̈min and v̈max are the 
minimum and maximum acceptable jerk values. 

More constraints may have to be imposed, depending on 

the application. For example, speed boundary conditions, 
acceleration and jerk conditions all may play an important 
role in some of the considered optimization problems. 

III. E-POWERTRAIN CHARACTERISTICS AND THEIR 
SENSITIVITY 

Electric drives in many ways differ significantly from 
conventional powertrains. For the purpose of this analysis, 
we will concentrate on the efficiency as a function of torque 
and speed. To illustrate this point, consider Fig. 4 that depicts 
two efficiency maps, one for a conventional ICE and one for 
an electric drive. Two differences are apparent: The 
efficiency levels in an e-drive are significantly (two to three 
times) higher and they vary less as a function of torque and 
speed, i.e., e-drives usually show a large plateau of high 
efficiency whereas in conventional drives there usually is a 
very well defined efficiency peak or ridge. This also explains 
why for e-drives in certain operating conditions a constant or 
lumped efficiency model can provide fairly accurate results. 

Next, we will show via a brief sensitivity analysis and 
examples, that e-drives show an unusually high sensitivity to 
external environmental factors. The sensitivity of the 
quantity Pbat with respect to a quantity x is defined by: 

For the problem at hand, Pbat is battery power and x can 
be a variety of different variables such as wind speed ω, 
coefficient of rolling resistance fr , parasitic power Ppara or 
possibly temperature of the powertrain/batteries. The 
sensitivity depends on driving conditions and can vary 
widely depending on operating conditions. As an example, 
let us consider a Tesla Model S in two different situations, 
i.e., highway and urban conditions. The result depicted in 
Fig. 5 shows that energy sensitivity with respect to rolling 
resistance is much higher in urban driving than in highway 
conditions, whereas the opposite is true for the air drag term. 

Also, parasitic power almost plays no role in highway 
driving whereas it is significant in urban environments. In 



 

Fig. 6. Energy consumption as a function of rolling resistance coefficient 
for a trip from South Bend, IN to Chicago, IL. 
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Fig. 8. Energy consumption as a function of wind speed and direction for 
a trip from South Bend, IN to Chicago, IL. 

 

Fig. 9. Wind speed fluctuations and associated optimal vehicle speed 
variations. 

 

Fig. 7. Energy consumption as a function of parasitic power for a trip 
from South Bend, IN to Chicago, IL. 

order to illustrate the role each of the energy components 
plays in a typical trip, consider the drive from South Bend, 
IN to Chicago, IL through the interstate 90. Using a mix of 
FTP 75 urban, highway and US 06, the total transportation 
energy at the battery was computed when one variable was 
changed at a time, i.e., wind speed and direction, rolling 
resistance, parasitic power, and temperature. The results 
obtained by varying the rolling resistance coefficient are 
shown in Fig. 6, the parasitic power in Fig. 7 and the wind 
speed and direction in Fig. 8. The most pronounced effects 
are of air drag and rolling resistance coefficient, which can 
easily change the nominal energy consumption for the trip 
(25KWh) by 20-30% depending on weather conditions. For 
example, consider the curves for a Nissan Leaf for westerly 
and easterly wind changes of 10m/s. The energy needed for 
the trip changes from 25KWh to 30KWh for westerly winds 
and from 25KWh to 22KWh for easterly winds of 10m/s. 
Similarly, comparing clear roads with a rolling resistance 
coefficient of 0.01 to wet, heavy snow conditions with a 
coefficient near 0.03, the energy consumption increases from 
25KWh to approximately 40KWh. 

IV. EXPLOITING ENVIRONMENTAL CONDITIONS 
In light of the high sensitivity of e-drives to 

environmental factors, it makes sense to exploit these 
dependencies to boost efficiency. As an example, consider a 
vehicle that does a roundtrip from A to B and back to A. 
Assume there is a headwind when traveling from A to B and 
a tailwind from B to A. Then for a conventional drivetrain 
the fuel consumption differs little between the two drive 
segments assuming identical speeds, because in case of a 
headwind the torque increases (keeping speed the same) and 
thus both, power and the efficiency increase, while in the 
case of a tailwind power and efficiency are reduced, resulting 
in similar fuel consumption. Of course, this assumes that the 
engine does not operate at or near the efficiency maximum, 
which usually is the case. However, in the case of an e-drive, 
the efficiency in both directions stays approximately the 
same (due to the large efficiency plateau in the speed-torque 
diagram) and the trip portion with a headwind will see a 
higher energy expense than the portion with a tailwind. 
Therefore, one can exploit this dependency and adapt the 
speed with respect to environmental conditions, i.e., in this 
case by reducing the speed in case of a headwind and 
increasing it for a tailwind. Based on the results in the 
previous section, one can optimize transportation energy 
with respect to wind, rolling resistance coefficient, 
temperature, and parasitic power. 

There are two basic optimization problems that can be 
formulated: (i) Minimizing energy with trip time as the 
constraint and (ii) minimizing trip time with energy as a 
constraint, which is the dual problem. 

For the sake of brevity, we will only illustrate how to 
exploit the presence of different wind speeds along a trip. 
Similar approaches can be taken with respect to the other 
three quantities, even though the largest savings are obtained 
by exploiting wind speed fluctuations. Also, we will not 
consider the time minimization problem, since there are 
fewer applications. For details please refer to [10]. 

In [10], several different approaches were introduced that 
range from optimization with exactly known wind speed 
profiles to robust optimization where wind speeds are highly 
uncertain using an interval description. For the purpose of 
this paper, we limit the discussion to the deterministic case. 

Consider the example of a trip that is divided into 50 
drive segments and in each drive segment, the wind speed is 
constant. For the sake of simplicity, we assume the wind 
speed varies from segment to segment randomly and takes 
values between -10m/s to +10m/s in steps of 5m/s, i.e., 
possible values are -10, -5, 0, +5 and +10m/s. 

Fig. 9 clearly the energy optimal speed trajectory. The 
average vehicle speed of 27m/s is maintained while adjusting 
the vehicle segment speed to the wind speed, i.e. vehicle 
speed is increased for tailwinds and reduced for headwinds. 

Now consider Fig. 10 that shows two different routes, 



 

Fig. 10. Two routes with different weather conditions–a transportation 
energy comparison. 

 

 

 

 

i.e., route R1 and route R2, both leading from A to B. In the 
vertical parts of the two routes, route R1 encounters a 
headwind while route R2 encounters a tailwind. On the 
horizontal portions of the trip, wind speed changes as shown 
in Fig. 9 and these changes are identical for both routes. The 
vehicle traveling that route is a 10ton truck with a frontal 
cross-sectional area of 8 square meters. The difference in 
energy consumption for the two route is fairly large, and 
route 2 offers a 37.7% energy advantage over route 1, most 
of which coming from the vertical trip components. 

V. OPTIMAL STOP-TO-STOP TRAJECTORIES 
Emissions and excessive energy usage are especially 

problematic in urban environments and worldwide, cities are 
trying to limit traffic and emissions in urban centers. For this 
reason, plug-in hybrids and purely battery electric vehicles 
are an attractive option since they can operate without 
emissions. Even in smart cities with intelligent traffic 
infrastructure and optimized traffic flow, city driving can be 
modeled as stop-to-stop traffic. Due to the special properties 
of electric drives, this type of driving environment is well 
suited for optimization of speed trajectories, i.e. trajectories 
that are energy optimal. In other words, given a drive 
segment length, boundary conditions, i.e., zero speed, and 
drive time (or equivalently average speed), there are 
infinitely many speed trajectories that satisfy the above 
mentioned conditions, but there is only one such trajectory 
that is energy optimal. What we will show in this section is 
that for short and medium-length segments, energy savings 
produced by the optimal trajectory relative to typical 
trajectories can be very large, sometimes exceeding 50%. 
Such high levels of energy savings have a multitude of 
effects, including significantly extended range, less stress on 
the power grid, less congestion at charging stations, and 
lower cost of electric transportation. Of course, if power 
comes from renewable energy sources, this also translates 
into lower emissions. 

For all results presented we assume perfect situational 
awareness for each drive segment, i.e. typical accelerations, 
speed constraints, and segment length are known before each 
segment is started. We further assume, that the stop-to-stop 
segments in the FTP 75 urban cycle are typical and they are 
used as a reference and referred to as the “typical trajectory”. 

A. Boundary Conditions and Constraints 
The optimization problem is very similar to the problem 

stated in equation (3) in section II, i.e. we minimize 
transportation energy at the battery with a time constraint. 
However, additional constraints come from the fact that the 
speed at the beginning and end of the drive segments need to 
be zero, and limitations on acceleration and jerk due to either 
vehicle constraints, traffic constraints, or passenger comfort. 

Using a discretized version of equation (1) and assuming 
the energy at the wheel of the vehicle Ew,n as shown in (5). 

where n is the index of a discretized time segment. The 
acceleration of the vehicle is approximated by the difference 
in kinetic energy at each segment. 

The energy at the battery Eb,n for forward motion and 
reverse power flow is then given by (6): 

where ηfrw(T,ω) and ηreg(T,ω) are the efficiency of the vehicle 
for forward power flow and reverse power flow, 
respectively. T is the torque of the motor, and ω is its 
rotational speed. The efficiency values correspond to the 
complete powertrain, including the mechanical drivetrain and 
battery efficiencies which have very little variations under 
different power levels. 

Therefore, by adding all discretized energy segments, the 
total energy drained from the battery E is given by (7), where 
N is the final discrete time-segment, i.e., when the vehicle 
reaches a stop. 

With that, we can then formulate the optimization 
problem shown in (8). 

where vavg is the desired average speed, vmax is the maximum 
allowed speed, dmax is the maximum allowable deceleration, 
and amax is the maximum allowable acceleration. 

B. Optimization Results for Typical E-Drive 
In Table I, the improvements on energy consumption 

using the optimized trajectory are summarized for a typical 
torque-speed dependent efficiency characteristic as it was 
shown in Fig. 4b. Several different vehicles and segment 
length are compared. Vehicle data can be found in Table II 
(all vehicle have a coefficient of rolling resistance fr equal to 
0.01).  

Fig. 11 shows sample trajectories of speed and 
cumulative energy expenditure at the battery for a Nissan 
Leaf (vehicle type 2) and one particular set of conditions, 
i.e., vavg = 10m/s, d = 1000 m, amax = 4.6m/s2 , amin = −2m/s2. 

One can clearly see that the optimizer expends most 
energy at the beginning in hard acceleration. After that a 
sawtooth-like speed trajectory is executed as the optimizer 
places the trajectory into the high-efficiency region of the 
torque-speed diagram, which requires higher power levels 
and cannot be achieved at low constant speeds but by 
repeated segments of coasting and acceleration. Energy 
savings of above 50% are not unusual as can be seen in 
Table I. 



TABLE II.  VEHICLE PARAMETERS UTILIZED IN SIMULATIONS 

Vehicle Mass 
(kg) 

CdA 
(m2) 

Max. 
Accel. (m/s2) 

Max. 
Decel. (m/s2) 

Vehicle type 1 2,018 0.6720 8 2.5 
Vehicle type 2 1,525 0.6583 4.6 2 
Vehicle type 3 1,525 0.6583 8 2.5 
Vehicle type 4 2,500 0.5000 4.6 2 
Vehicle type 5 800 2.0000 4.6 2 

 

 
(a) 

 
(b) 

Fig. 11. Sample trajectories of (a) typical and optimal speed trajectories, 
(b) cumulative energy consumption over a 1000-meter segment usign 
torque-speed dependent efficiency characteristic. 

TABLE III.  VEHICLE PARAMETERS UTILIZED IN SIMULATIONS 

Vehicle Mass 
(kg) 

CdA 
(m2) 

Max. 
Accel. (m/s2) 

Max. 
Decel. (m/s2) 

Vehicle type 1 2,018 0.6720 8 2.5 
Vehicle type 2 1,525 0.6583 4.6 2 
Vehicle type 3 1,351 0.6998 4.8 2 
Vehicle type 4 1,475 0.5600 2 1.5 
Vehicle type 5 1,390 0.7140 5 2 

 

 

Fig. 12. Percentage of energy saved by floating and rigid platoons of 
different sizes for a 592.55-meter and a 1083.36-meter segment. 

In summary, optimizing speed trajectories in stop-to-stop 
urban traffic can have tremendous efficiency benefits. 
However, this is only possible if complete situational 
awareness of traffic in the upcoming drive segment can be 
attained. Unforeseeable events or incorrect/missing 
information can drastically reduce the effectiveness of the 
proposed method.  

VI. URBAN PLATOONING 
For some time, platooning has been considered to be a 

promising method for improving efficiency of vehicles 
driving on highways, especially trucks [11]–[14]. The idea of 
platooning is to have a train of trucks where one truck 
follows the next at a close distance, thus, reducing air drag 
and therefore power and energy/fuel consumption. This 
effect is especially pronounced at high speeds and close 
following distances. While close following distances can be 
problematic, the emerging networked vehicle concept can 
facilitate relatively safe operation of platooning even at close 

following distances. So from an analytical point of view, in 
highway platooning at constant speeds, one of the four 
power-consuming terms, i.e. the air drag term, is reduced 
while rolling resistance, acceleration, and hill-climbing 
power remain the same. 

What is proposed in this paper is urban platooning, i.e. 
vehicles (not necessarily trucks) that execute a speed profile 
in a platoon formation. The parameters of each vehicle 
utilized in this simulation are shown in Table III. In contrast 
to conventional highway platoons, the dynamics of 
accelerating and decelerating play a key role and the impact 
of air drag reduction is often negligible since speeds are 
much lower. In essence, the answer lies in the optimal speed 
trajectory approach explained in the previous section. For 
example, if all vehicles are identical, they all have the same 
energy optimal speed trajectory and can platoon in a rigid 
platoon. Additional benefits come from the fact that only the 
lead vehicle needs to have optimization software, traffic can 
be made more compact, and fast queue depletion due to hard 
initial acceleration helps decongestion of traffic. 

There are essentially two fundamentally different platoon 
options: One is the case of a rigid platoon where all vehicles 
execute one common optimal trajectory. The second option 
is a floating platoon, where vehicles that have similar 
properties execute their respective optimal trajectories thus 
drifting apart in a stop-to-stop segment. 

Fig. 12 shows the percentage savings (when compared to 

TABLE I.  ENERGY CONSUMPTION FOR TYPICAL E-DRIVE 

Vehicle Average speed (m/s) Segment length (m) Energy utilized (kWs) Energy saved Typical trajectory Optimal trajectory 
Vehicle type 1 10 300 429.15 226.46 47.23% 

500 649.55 265.02 59.20% 
1,000 913.47 381.62 58.22% 
3,000 2,138.09 1,032.88 51.69% 

18 3,000 3,212.75 1,550.38 51.74% 
Vehicle type 2 10 300 247.86 182.74 26.27% 

500 379.84 191.33 49.63% 
1,000 596.89 297.4 50.18% 
3,000 1,571.94 782.98 50.19% 

18 3,000 2,281.56 1,286.24 43.62% 
Vehicle type 3 10 300 289.18 162.48 43.81% 
Vehicle type 4 390.15 265.63 31.92% 
Vehicle type 5 198.48 129.91 34.55% 

 



 

(a)                                                   (b) 

Fig. 13. Percentage of energy saved by 10 randomly chosen vehicles in a 
platoon (a) for different segment lengths with an average speed of 10m/s 
and (b) for different average speeds in a 500-meter segment. 

typical speed trajectories) achieved by optimizing two 
different segments (592.55m and 1083.36m) for each one of 
the platoon types, i.e., a rigid platoon and a drifting platoon, 
where the platoon size varies from 2 to 20 vehicles. It can be 
easily noted that a rigid platoon provides lower savings than 
a floating platoon. This diminished savings are especially 
noticed for longer segments. However, rigid platoons are 
more space-efficient while drifting platoons as the name says 
will drift apart and care must be taken to avoid collisions. 
This can be partially addressed by larger initial distances or 
optimal ordering of vehicles. This, however, results in loss of 
compactness and bad space utilization. Generally, in contrast 
to floating platoons, rigid platoons offer great advantages at a 
relatively low cost for short traffic segments; for long 
segments, floating platoons are generally more attractive. 

Fig. 13a shows the dependency of the energy savings on 
segment length. Segments varying from 500m to 1000m 
were tested with an average speed of 10m/s. Similarly, Fig. 
13b shows the impact the average speed has on energy 
savings. The simulation was performed for a segment of 
500m with average speed varying from 6 to 11m/s. Each 
simulation used a platoon of 10 randomly chosen vehicles 
(from Table III). It is clear that the savings produced by 
either, individually optimizing each vehicle or optimizing the 
speed profile for an average vehicle in the platoon maintain 
relatively constant savings, with little changes based on 
either the segment length or average speed. Most of the 
variation observed is due to different arrangements of 
vehicles. 

In all of the above results, efficiency maps based on Fig. 
4b were utilized to model the drivetrain efficiency values. In 
addition, platoon vehicles were randomly generated from the 
set of vehicles shown in Table III. 

VII. CONCLUSION 
This paper shows that the confluence of the three 

concepts (self-driving vehicles, connected vehicles with 
situational awareness, and e-drives)  provides new 
opportunities with great potential for energy efficiency 
optimization in several key applications. It is illustrated that 
in urban transportation, the proposed paradigm can lead to 
energy savings of over 50% depending on vehicle, 
infrastructure and traffic parameters. It is shown how one can 
extend the method to dynamic and stationary platoons of 
vehicles. Other approaches that boost efficiency by 
exploiting environmental conditions are also discussed and 
possible gains are illustrated.  

While electric drives can already be found in a small 
portion of vehicles, the capability of exploiting situational 
awareness using self-driving capabilities is in its infancy. 

Therefore the proposed mechanisms can be realized only in a 
very small portion of vehicles and in controlled 
environments such as dedicated lanes, public transport 
systems, etc. Long term aspects of the proposed paradigm 
look promising, but a few obstacles need to be overcome: In 
particular, all examples presented in this paper assumed 
complete situational awareness. In practice this is not 
feasible and the longer the time horizon the higher the 
uncertainty. Even for short time horizons, unexpected events 
are unavoidable and will reduce the effectiveness of the 
proposed method. Realization of situational awareness 
providing apps and the extraction of important data in real-
time are also open problems. Also, real-time computation of 
the optimal trajectory still is a challenging area, but more and 
more powerful processors in autonomous vehicles will 
eventually mitigate this problem. 
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