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Abstract—Batteries are the bottleneck technology of 
electric vehicles (EVs), which hosts complex and hardly 
observable internal chemical reactions. This paper 
presents a big data-driven battery management method 
utilizing the deep learning algorithm, with the ability to 
work stably under dynamic conditions and whole battery 
life cycle. First, a Deep Belief Network-Extreme Learning 
Machine (DBN-ELM) algorithm-based battery model is 
established to extract the deep structure features of battery 
data, and in which the rain-flow cycle counting algorithm 
is used to reflect the battery degradation phenomenon. 
Next, to improve real-time performance of Battery 
Management System (BMS), a conjunction working mode 
between the Cloud-based BMS (C-BMS) and BMS in 
vehicles (V-BMS) is proposed, and a battery State of 
Charge (SoC) estimation method based on the interaction 
between C-BMS and V-BMS is also presented. Using the 
battery data to verify the model effectiveness and 
accuracy, the error of the battery SoC estimation is within 
3%. 

Keywords—electric vehicle, battery energy storage, 
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I. INTRODUCTION  
The battery and its management system are the most 

important components of EVs[1]. Reasonable data 
collection and analysis are the foundation for state 
estimation and fault diagnosis of the battery, and accurate 
battery state estimation is the premise of durability and 
safety management[2].  

Currently, research on the battery and its management 
system mainly focuses on the parameter identification[3], 
SoC estimation[4] and fault detection[5] based on the 
equivalent circuit model and electrochemical model[6]. 
However, there are still two main factors that limit the 
accuracy of the battery model: Data volume & system real-
time performance and algorithm performance. 

A. Data volume and system real-time performance 
Currently, BMS in vehicles is the most commonly used 

instrument for battery modeling and state estimation. The 

data of which are generally derived from a single vehicle 
[7]. The data volume and available calculating ability in 
the V-BMS is limited, but the chemical reaction process of 
the battery is affected by factors such as temperature, 
battery life state, dynamic conditions, etc. [8]; it is difficult 
to accurately model the battery in the case of insufficient 
data. 

Cloud data centers have advantages including high 
storage capacities, high calculating abilities, etc[9]. 
Therefore, this paper proposes a cloud-based battery 
management system. 

The real-time performance of the system usually 
conflicts with system accuracy and adaptability, which is 
especially evident in the battery management system. The 
equivalent circuit model is one of the most commonly used 
models of lithium-ion batteries in EVs. Rui Xiong et al.[10] 
used an equivalent circuit model to simulate and model the 
external characteristics of the battery, and the adaptive 
extended Kalman filtering (AEKF) algorithm is also used 
in their work to estimate the battery SoC. The experimental 
results show that the established model can accurately 
simulate the characteristics of the battery, and the error of 
estimated SoC is within 2%. The H∞filter algorithm is 
used in Jingyu Yan’s work[11] to estimate the SoC of EV, 
and the simulation experiment based on a typical battery 
model is used in their work to verify the availability and 
efficiency of the method. The equivalent circuit model and 
Kalman filtering algorithm is able to realize high accuracy 
battery modeling and SoC estimation under standard 
conditions. However, considering the complex working 
condition of EVs including variable temperatures and the 
battery aging phenomenon, the mentioned methods appear 
to be incompetent, with sharp increasing error or model 
divergence. 

The data-driven battery modeling method can achieve 
high-precision simulation for battery characteristics, 
thereby obtaining a higher SoC estimation accuracy. 
Hicham Chaoui came up with a neural network based 
approach for lithium-ion battery modeling and SoC 
estimation[12], the experimental results highlighted the 
high modeling accuracy. However, the training and 
updating of the model requires large amount of computing 



resource and time, which makes it impossible to be applied 
in V-BMS. 

To improve the accuracy and stability of battery 
modeling and SoC estimation while ensuring the system 
real-time performance, a conjunction working mode 
between C-BMS and V-BMS is proposed in our work, and 
a battery SoC estimation method based on the interaction 
between C-BMS and V-BMS is also presented. 

B. Algorithm performance 
The neural network algorithm has a strong nonlinear 

mapping ability, which can automatically learn useful 
knowledge from the data without an accurate mathematical 
model. However, the chemical reaction in lithium-ion 
battery is complex, and the volume of training data is large, 
so the training process of the black box model turned out to 
be rather difficult. While most of the algorithms used to 
model the battery can be regarded as shallow structure 
networks[13, 14], whose performance on approximation of 
complex functions is limited under limited computing units. 
Kang L W et al.[15] made estimation on battery open 
circuit voltage or SoC using BP neural network algorithm, 
but it's hard to simulate the reaction inside the battery 
when the neural network has few hidden layers, which 
results in rather unstable regression with larger error. Haq I 
N et al.[16]  established a battery model using Support 
Vector Regression algorithm. However, although the 
model has low requirement on training data, and achieved 
effective results with considerable robustness in 
experimental stage, with the amount of training data 
increasing, the training time of the model increases 
explosively, making it difficult to handle those training 
samples with large volume of data.  

In contrast to neural network algorithm, deep learning 
algorithms could effectively simulate the highly nonlinear 
mapping between the input and output. At present, deep 
learning algorithms have been widely used in electric load 
forecasting, traffic speed prediction, energy management 
system, etc. 

To tackle the deficiency of the black box model with 
shallow neural network algorithm, we make the first 
attempt to apply the DBN-ELM algorithm to battery 
modeling issues. The idea is to fully excavate the hidden 
features in battery data, so as to utilize the battery big data 
effectively and improve the battery modeling accuracy. 

II. BATTERY MODELING METHOD BASED ON RAIN 
FLOW COUNTING ALGORITHM AND DBN-ELM 

MODEL 
The degradation phenomenon of lithium-ion battery is 

mainly affected by the number of cycles and the depth of 
discharge. Therefore, it is important to take the number of 
cycles and the depth of discharge into consideration to 
improve the model accuracy when establishing the battery 
model. 

A. Rain-flow counting algorithm 
The rain-flow cycle-counting algorithm is usually used 

for analyzing the fatigue data and was firstly used in metal 
fatigue estimation[17]. In this research, this method is used 
to extract the irregular charging and discharging cycles that 
the battery experienced during the simulation period. 

Basically, the cycle counting can be achieved by the 
following three steps. Firstly, the data (for the battery the 
data is the DOD that presents the battery charge/discharge 
cycles) is pre-processed by searching for adjacent data 
points with the reverse polarity so that the local maxima 
and minima can be found and stored in a matrix. Secondly, 
full cycles are composed by analyzing the turning points 
and combining these sub-cycles to get full-cycles together 
with the summing up of the amplitudes. Thirdly, the 
number of cycles is extracted and counted in varying 
amplitude, and stored for later use. 

B. Lithium-ion battery modeling with battery degradation 
considered 
The chemical reaction and degradation phenomenon in 

Lithium-ion battery is complex and difficult to be 
monitored directly, so this paper established a battery 
model which simulated the internal state with neural 
network and quantified the battery degradation with rain-
flow cycle counting algorithm. 

In the previous battery modeling method, the current, 
temperature and terminal voltage are the inputs, and the 
SoC is the output. However, to take the impact of battery 
degradation on the battery model into consideration, the 
total number of cycles (TNOC) and the total depth of 
discharge (TDOD) are used as additional model inputs. 
The purpose of the neural network is to approximate the 
function: 

( )1, , , , ,k kSoC f SOC I T U TNOC TDOD−=            (1) 

C. Deep belief network 
The Restricted Boltzmann Machine (RBM) is the basic 

unit of the DBN[18]. It is essentially an energy-based 
generation model, which can be regarded as an undirected 
graph model. The nodes in different layers are fully 
connected, and there is no connection between nodes in the 
same layer. The structure of RBM is shown in Fig. 1. 

 
Fig. 1. The structure of Restricted Boltzmann Machine.  

A DBN can be regarded as a network composed of 
several Restricted Boltzmann Machine. As shown in Fig. 2, 
a DBN is formed by stacking three RBMs in this paper. 



 
Fig. 2. The structure of Deep belief network.  

Each layer of the DBN is a separate RBM, which 
consists of a visible layer v  and a hidden layer h . During 
training, the training data is used as the input of the visible 
layer 1h  of the first RBM. Then, the output of the hidden 
layer of the first RBM is used as the input of the visible 
layer 2v of the next RBM. Analogously, the RBM is 
trained unsupervised from the bottom up, and the output of 
the hidden layer 3h  of the top-level RBM is the abstract 
expression of the input data. 

After the training process is completed, the weight and 
offset of the entire network are saved. At this time, for a 
single restricted Boltzmann machine, the offset a of the 
visible layer v  is no longer used, and the connection 
weight W  becomes one-way, as shown in Fig. 4, the 
structure is the same as the forward neural network. 

D. The DBN-ELM model 
Extreme Learning Machine (ELM) is a machine 

learning algorithm that solves the problem of regression, 
the core of the ELM algorithm is the linear regression layer, 
in which the regression problem is converted to the 
problem of finding least-squares solution for linear system 
[19]. 

DBN-ELM is a commonly used algorithm in deep 
learning[20]. The DBN model is trained unsupervised from 
the bottom-up by unlabeled data, and it is used as a feature 
extractor. The output of the DBN model is used as the 
ELM’s input; afterwards, the ELM is trained directly by 
labeled data and is used as the output layer of the DBN-
ELM model. 

Aiming at the battery terminal voltage prediction 
problem in this paper, the feature extraction process in 
DBN can be regarded as the simulation of complex 
chemical reactions inside the battery, that is, the internal 
characteristics of the battery are excavated with a large 
amount of battery data, so that the subsequent modeling 
process is more stable and accurate. 

III. THE CONJUNCTION WORKING MODE BETWEEN 
C-BMS AND V-BMS 

For the reason that the data volume which can be used 
for battery modeling from a single electric vehicle is 

insufficient, the V-BMS has difficulty working stably 
under multi-variable environments and dynamic conditions. 
Cloud data centers have advantages including high storage 
capacities, high calculating abilities, etc. Therefore, this 
paper proposes a cloud-based battery management system. 
For a single electric vehicle, a C-BMS with a data 
transmission module is established based on the V-BMS, 
and the battery data are uploaded to the cloud in real-time 
for further analysis. The cloud receives and stores the data 
of all EVs that share the same specification, and a 
multidimensional, multistate, multifactor complex data 
space is provided for battery modelling and SoC estimation. 
Combined with the DBN-ELM algorithm, the established 
model can comprehensively reflect the influence of 
temperature, aging, dynamic conditions and so on, 
improving the accuracy of battery state estimations and 
optimizing battery management strategies. 

However, in the one hand, due to the existence of 
remote communication process, C-BMS has limited real-
time performance; on the other hand, the deep learning-
based battery modeling method is not able to effectively 
utilize the recursive relationship of time series in SoC 
estimation process, and its accuracy is limited. As such, in 
this section, a conjunction working mode between C-BMS 
and V-BMS is proposed to make better use of big data 
stored in the cloud, as shown in Fig. 3. 

 
Fig. 3. The conjunction working mode between C-BMS and V-BMS.  

Step 1. The battery data is calibrated based on the rain-
flow counting algorithm first, and based on the C-BMS, a 
database containing integral battery status information is 
established to provide a good data foundation for battery 
modeling. 

Step 2. A black box model is established for the battery in 
the cloud based on deep learning algorithm, the SoC is 
used as the model's output as shown in formula 1.  

Step 3. The V-BMS monitors and controls the battery 
directly. The equivalent circuit model and the least squares 
algorithm or the Kalman filtering algorithm are used to 
model the battery and estimate the SoC. At the same time, 
the C-BMS builds a big data driven SoC estimator that can 
work stably under multi-variable environments and 
dynamic conditions in the cloud. However, due to the data 
exchange delay between the V-BMS and the C-BMS, the 



SoC estimator in the C-BMS cannot be directly used in 
battery management or vehicle energy management. 
Therefore, in this step, the cloud-based SoC estimator is 
used to work in conjunction with the V-BMS. C-BMS 
regularly provides accurate SoC sequences for V-BMS, 
based on these SoC sequences, on the one hand, the V-
BMS adaptively modifies the equivalent circuit model 
parameters, and on the other hand, it adaptively corrects 
the real time SoC estimation result in the Kalman filter. 

IV. BATTERY SOC ESTIMATION METHOD BASED ON C-BMS 
AND V-BMS INTERACTION  

A. Lithium-ion battery model and parameter 
identification  
The equivalent circuit model is one of the most 

commonly used methods in battery modeling. Although 
the higher-order equivalent circuit model has better 
accuracy, it will bring about greater difficulties to the 
model parameter identification process. Therefore, the 
equivalent circuit model selected in this paper is a second-
order RC model, as shown in Fig. 4[21].  

 
Fig. 4. Equivalent circuit model.  

The state equation of the equivalent circuit model is as 
follows: 
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Where ,d cU U  is voltage of ,d cR R  respectively, LI  is the 
charge and discharge current, tU represents battery terminal 
voltage, ocU is the open circuit voltage (OCV). 

To realize online estimation of battery model 
parameters, the forgetting factor recursive least squares 
(FFRLS) method is used in our work. In the parameter 
identification process, the most important process is to 
continuously update SoC value during the identification. 
The current mainstream method is to obtain the SoC 
update based on the ampere-hour integral method, but it 
will directly lead to error accumulation, which will result 
in model divergence; Another method is combined with 
SoC estimation based on Kalman filtering algorithm to 
obtain a relatively accurate SoC in identification process, 
but it also will lead to the error passing between two 
algorithms, thereby increasing the modeling error. In order 
to overcome the above difficulties, we propose a battery 
parameter identification method based on the conjunction 
working mode between C-BMS and V-BMS.  

 
Fig. 5. Battery parameter identification method based on the 
conjunction working mode between C-BMS and V-BMS.  

The flowchart of FFRLS algorithm-based battery 
parameter identification method is shown in Fig. 5. To 
avoid the error accumulation in SoC estimation, the 
historical SoC is obtained from C-BMS, and transformed 
into open circuit voltage data based on the SoC-OCV 
curve. Then the open circuit voltage data are combined 
with the current and terminal voltage measured in V-BMS 
to form the input matrix for parameter identification. 

To obtain the parameters of the power battery model, 
the equation (2) is transformed into a transfer function 
expression as follows: 
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Based on the FFRLS algorithm, the historical battery 
data can be used to identify the battery parameters in the 
above transfer function, thereby completing battery 
modeling. 

B. AEKF algorithm based SOC estimation  
Kalman filtering algorithm is one of the most 

commonly used algorithms in the field of battery SoC 
estimation. It has many advantages such as high precision, 
high efficiency and easy hardware implementation. 
However, the ordinary Kalman filter algorithm has poor 
robustness and convergence speed. In comparison, the 
AEKF algorithm can adaptively correct the system noise 
covariance and the measurement noise covariance, with 
higher robustness and convergence speed. 

However, the traditional AEKF algorithm-based 
battery SoC estimation method has poor adaptability, and 
it is prone to non-convergence under dynamic and complex 
conditions, thereby its accuracy is inferior to the ampere-
hour integral method. On the other hand, the SoC 
estimation method based on AEKF algorithm relies too 
much on the accuracy of the equivalent circuit model, and 
there is frequent parameter transferring between it and the 
equivalent circuit model, which inclines to cause error 
diffusion. Finally, due to the battery aging phenomenon, 
and the AEKF algorithm is not able to effectively identify 
the SoH change, the SoC estimation error tends to increase 
with battery degradation. In order to solve the above 
problems, we propose a SoC estimation method based on 
AEKF algorithm and the conjunction working mode 
between C-BMS and V-BMS in this section. 



 
Fig. 6. Battery SoC estimation method based on the conjunction 
working mode between C-BMS and V-BMS.  

The flowchart of proposed battery SoC estimation 
method based on the conjunction working mode between 
C-BMS and V-BMS is shown in Fig. 6. To improve the 
adaptability and robustness of the AEKF algorithm, we 
combine the SoC estimation results in C-BMS as an 
additional system observation variable, reducing its 
dependence on the accuracy of equivalent circuit model 
and thereby improving algorithm accuracy. The details of 
improved AEKF algorithm are as follows. First, a discrete 
state space equation[22] which reflects the change of state 
is established:  
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Where C is the current battery capacity; T is sampling 
period; cτ and dτ are the time constants in RC loops; i is 
battery current; w represents the system noise. 

We use ( , )k kf x u  to represent system state 
equation, ( , )k kh x u  to represent the observation equation of 
system, then the system state transition equation can be 
represented as follows: 
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  Where x is system state matrix, u is system input 
matrix, y  is system observe matrix, kυ is observe noise 
matrix, kω is system noise matrix. 

The equation of linearized model is as follows: 
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The above formula is a standard expression of the 
AEKF algorithm. According to the AEKF flow shown in 
Figure 5, the system state can be continuously updated by 
iteration, thus realizing SoC estimation. 

V. RESULT AND DISCUSSION   
In this paper, the actual operation data of the EVs are 

used as the experimental data, and the terminal voltage, 
SOC, battery temperature and discharge current of the 
battery are collected during normal driving. Totally 15000 
sets of battery data are collected, and the data distribution 
is shown in Fig. 7. 

 
Fig. 7. The data used in this paper.  

A. Battery modeling result 
To establish an accurate battery model, it is necessary 

to properly quantify the power battery degradation. Based 
on the battery degradation quantification method proposed 
in Section II.A, we quantify the degradation phenomenon 
in the battery historical discharge curve before modeling. 

 
Fig. 8. The result of rain-flow cycle counting algorithm based battery 
degradation quantification method. 

Fig. 8 shows the result of rain-flow cycle counting 
algorithm-based battery degradation quantification method. 
After battery SoC profile is given, all the discharge cycles 
experienced during the whole battery life time can be 
extracted and the depth of discharge for each cycle is 
recorded. 

 
Fig. 9. The accuracy of the DBN-ELM model in a discharge cycle. 



The accuracy of the DBN-ELM model in a discharge 
cycle is shown in Fig. 9. The battery model based on the 
DBN-ELM algorithm can accurately estimate the battery 
terminal voltage under dynamic conditions, and the error is 
within 3%.  

In order to verify the proposed conjunction working 
mode between C-BMS and V-BMS, we performed a 
charge and discharge experiment on a single battery pack. 
The experimental scheme is as follows: the battery is 
placed in a 25ºC chamber, loaded with Urban 
Dynamometer Driving Schedule conditions. 

 
Fig. 10. The accuracy SoC estimation based on the proposed conjunction 
working mode between C-BMS and V-BMS. 

Fig. 10 illustrates the results of SoC estimation based 
on the proposed conjunction working mode between C-
BMS and V-BMS. It is apparent that the SoC estimators 
can work stably, and the model accuracy is significantly 
improved compared with cloud based SoC estimator. The 
mean absolute error is within 1% and the maximum 
relative error is within 3%.  

VI. CONCLUSION 
This paper presents a big data driven battery 

management method utilizing the deep learning algorithm, 
with the ability to work stably under dynamic conditions 
during whole battery life cycle. The rain-flow cycle 
counting algorithm is able to reflect the battery degradation 
phenomenon effectively, and the battery modeling method 
based on DBN-ELM algorithm is able to extract the deep 
structure features of the data effectively, and the results 
show that the deep-learning algorithm is able to reduce 
model error and achieve a high-precision simulation for the 
dynamic characteristics of the battery effectively, and error 
of the SoC estimation result is within 3%. The proposed C-
BMS is able to effectively deal with big data resources and 
can reduce the calculation burden of the V-BMS. It 
provides a multidimensional, multistate, multifactor 
complex data space for battery modeling and SoC 
estimation. The presented conjunction working mode 
between C-BMS and V-BMS is able to improve the 
accuracy and stability of battery modeling and SoC 
estimation while ensure the system real-time performance. 
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