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Abstract— In this article, a robust machine-learning 

based computational framework that couples multi-layer 

neural network (MLNN) proxies and multi-objective 

particle swarm optimizer (MOPSO) to design water-

alternative-CO2 injection (CO2-WAG) projects is 
presented. The proposed optimization protocol considers 

various objective functions including oil recovery and CO2 

storage volume. Expert MLNN systems are trained and 

employed as surrogate models of the high-fidelity 

compositional simulator in the optimization workflow. A 

large volume of blind testing applications is employed to 

confirm the validities of the proxies. When multiple 

objective functions are considered, two approaches are 

employed to treat the objectives: the weighted sum 

method and Pareto-front-based scheme. A field scale 

implementation to Morrow-B formation at Farnsworth 

Unit (FWU) to optimize the tertiary recovery strategy is 
discussed. In this work, investigations will focus on 

comparing the optimum solution found by the aggregative 

objective function and the solution repository covered by 

the Pareto front, which considers the physical and 

operational constraints and reduces uncertainties involved 

by the multi-objective optimization process. Necessary 

trade-offs need to be decided using the solution repository 

to balance the project economics and CO2 storage amount.    

Keywords—optimization, carbon dioxide, 

sequestration, proxy models, multi-objective 

I. INTRODUCTION  

Greenhouse gas (GHG) emission related with human 
activity has been known as one of primary reasons resulted 
in global warming issue and gained a lot attention in recent 
years[1-3]. At the same time, CO2 flooding is proofed to be 
an efficient technique to produce more residual oil after a 
mature field after primary and secondary oil recovery and 
has been widely used in USA as one Enhanced Oil 
Recovery (EOR) technique[4-10]. A CO2 –EOR project 
would have dual benefits of injecting CO2 to underground 

oil reservoirs to improve oil recovery and safely storing a 
large volume of these injected oil within the rock. This 
project is also known as a CCUS project, which referring 
carbon capture, utilization and storage.  

The Southwest Regional Partnership on Carbon 
Sequestration (SWP) is one of seven regional partnerships 
funded by the US Department of Energy (DOE) to study 
techniques and strategies on safely and permanently 
storing of CO2 in partially depleted oil and gas reservoirs. 
SWP project is in its Phase III study now, which focuses 
on an actual CO2 –EOR field project in Farnsworth Unit 
(FWU). A rigorous numerical model was established and 
validated by history matching with the field history. Such 
numerical model can also be utilized to forecast the oil 
recovery and track the long-term fate of injected CO2[7, 8, 
11-13]. On the field side, a total amount of 16.82 Bscf of 
anthropogenic CO2 was injected into the Morrow B 
formation in FWU during the time period from December 
2010 to December 2014[8]. Promising responses obtained 
from field implementations indicate that the undergoing 
CO2 EOR project is competent to both effectively produce 
residual oil and safely store CO2. 

As a CCUS project, an ideal development strategy for 

FWU would seek to maximize both hydrocarbon 

production and CO2 sequestration simultaneously, which 

introduces two objectives to be optimized. Notably, the 

improvement of oil production may not lead to increments 

of CO2 storage, since CO2 storage needs investment for 

CO2 injection. Thus, the maximization of oil production 

and CO2 storage can be treated as two conflict objectives. 

Multi-objective Particle Swarm Optimization (MOPSO) is 

employed to establish the to find the Pareto front to store 
the alternative solutions since it is easier to implement and 

converges faster than other optimization algorithms [14]. 

MLNN models are trained and coupled with MOPSO to 

accelerate the optimization protocol. The innovative 

aspects of this work involve: 



(1) Compared with previous optimization work within 

FWU [7, 8], Pareto optimum is used for the first time to 

co-optimize oil production and CO2 sequestration, which 

are two objectives with conflict relation. Pareto front 

provides FWU operators more options of the design 

parameters based on various demands of project outcome. 

(2) A hybrid workflow incorporating MOPSO and 

MLNN is established and demonstrated to be fast, robust 

and stable. MLNN proxy modeling is capable to mimic 

nonlinear mapping from operational variables to time-
series predictions (e.g. cumulative oil production and CO2 

sequestration). The ability to investigate those two 

dynamic and time-dependent outputs is important to SWP 

project, since investigation of how those parameters 

involves with time will provide SWP scientists more 

information on geological and porous media fluid 

properties.  

(3) After generating a Pareto front of multiple 

objectives, a further step is made: a trade-off factor is 

defined in this work to assist decision maker for make a 

decision on quick selection of objective values. 

(4) Last but not the least, this work will also 

investigate the difference between the unique optimal 

solution found using weighted sum method (a classfical 

method that is wildely used to solve multi-objective 

optimizaon problem) and Pareto optimal solutions. The 

comparison between these two methods would show 

Pareto optimum is able to address the existence of non-

unique solution of MOP optimization and show how it 

influence making a decision. 

With the help of developed optimization protocol, 

engineers of a CCUS project would have more flexibility 

on project designing such that less trade-off needs to pay 

when optimizing multiple conflict objectives.   

II. METHODOLOGY 

In this work, the training data and test data are 

extracted from a companion work where a total of 597 
high-fidelity simulation experiments were conducted as 

raw data. These 597 numerical simulations are performed 

on a compositional reservoir model that incorporating 

geological, geophysical and engineering data, and this 

reservoir model has been successfully history matched 

with field data by calibrating it with 55 years primary and 

secondary production data and 8 years tertiary CO2 –

WAG data. The workflow is summarized in Figure 1. 

 

Figure 1 Procedures of optimization framework 

Detailed procedures will be presented in following 

sections. 

A. Data Preparation 

Training data include complete inputs and outputs 
extracted from these 597 high-fidelity experiment runs. 

Training inputs are 4 parameters selected from a 

sensitivity analysis, including water cycle, gas cycle, 

producer bottomhole pressure (BHP) and water injection 

rate. Training targets are time series of cumulative oil 

production and CO2 storage amount in next 20 years. 50 

data points are extracted from each time series at equal 

time interval, which is to represent the entire time series. 

For each numerical simulation run, two time series are 

extracted as training targets in this work: cumulative oil 

production and CO2 storage, since the objectives need to 

be optimized are cumulative oil production at the end of 

20 years forecasting time period and the amount of CO2.  

Figure 2 displays the structure of training dataset. 

 

Figure 2 Structure of training dataset, the traing targets include 

cumulative oil production (green), CO2 storage amount (red) 

B. Development of Multi-layer Neural Network 

A multi-layer neural network is composed of three 

types of layers: one input layer, one (or more) hidden 

layers and one output layer. The input information is 

transferred to hidden layers via weighted connections. The 

information is processed in neurons in hidden layers 

through the linear transformation function (activation 

function) and then transferred to the output layer. 

Connections between hidden layers and from hidden layer 

to output layer are controlled by weight vectors. 

The architecture to be optimized in this work of a 
multi-layer feedforward neural network accounts for the 

number of neurons in each hidden layer, the number of 

hidden layers and activation functions used in each hidden 

layer. Since different architectures will influence the 

performance of the developed feedforward neural 

network, a pool containing different neural network 

architectures is generated in this work and the 

optimization framework will select the architecture that 

have best performance from this pool. 

Considering the size of database used for this work, 

maximal number of hidden layer is set to be 5, and 
possible number of neurons in each hidden layer is pre- 



set to be selected from a close set [50, 200] due to the 

number of outputs constructed in training data. Possible 

options for the activation function used in this work 

include the hyperbolic tangent sigmoid transfer function 

(tansig) and the log-sigmoid transfer function (logsig). 

The framework will select the best architecture from the 
pool. For simplicity, a format is defined to represent 

possible combinations. For example, an architecture 

containing 3 hidden layers, with 60 neurons in the first 

layer, 70 neurons in the second layer and 80 neurons in 

the last layer will be expressed as {60, 70, 80} The 

number of values in the brace represents the number of 

hidden layer used in each architecture, and each value 

representing the number of neurons in each hidden layer. 

For example, {80} means only 1 hidden layer with 80 

neurons is used.   

For every training of network, the 597 training 

datasets will be randomly divided into three groups 
following the ratio of 80%, %10 and 10%. Among them, 

477 sets of data will (80% of 597 runs) will be used to 

train the neural network. 60 sets of data (10% of 597 runs) 

will be used for validation purpose, while the other 60 sets 

of data are used in blind tests. The performance of the 

trained neural network is determined by finding the 

absolute relative error of blind test data that are not used 

in training the network. The absolute relative error of 

blind test data (E) in one training realization is calculated 

based on Eq. 1: 


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where Tk is the observed target value of k-th output, Yk is 

the predicted value of k-th output, m is the number of 

outputs of each experiment. 

In this work, each of architecture picked from the 

architecture pool will be train 10 times repeatedly. For 

each training work, the training data, validation data and 

test data are randomly selected from the 597 data sets 
following aforementioned ratios, which is to make sure 

every training realization will use different training data. 

The alternation of test data in every training realization 

also guarantees the trained network can be tested in a 

broader range of data that are not used for training and 

validation purpose. Finally, the framework will find out 

the average absolute relative error of these 10 times 

training works (Ei), which is expressed by Eq. 2: 
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where Ei is the average blind tests error of the i-th 

architecture; Es is the blind tests error in s-th training. 

III. RESULTS 

A. Optimal Architecture  

Table I summarizes the specifications of the found 

optimal MLNN architectures. 

 

Table I Summary of the Optimal MLNN Architecture Found 

Number of hidden layer 5 

Hidden layer neurons {159,168,51,101,53} 

Activation functions 
{tansig, tansig, tansig, 

logsig, logsig} 

Blind test error 0.54% 

The average absolute error calculated in 10 training 

runs of this optimal architecture is 0.54%. Figure 3 

displays the histogram of the absolute relative errors of 10 

training runs. In each training run, 60 sets of numerical 

experiment data are used as blind tests data, thus a total of 

600 sets of data are used to test the architecture in 10 

training runs. As shown, 52.50% of the blind test data sets 

have an error less than 0.5%, 97.83% of them have an 
error less than 1%. There is only one data set found to 

have an absolute relative error lager than 2% (2.61%). 

 

Figure 3 Histogram of blind tests results  
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Figure 4 Comparison between Target Values and Predicted Values in 3 

Selected Blind Tests  

Figure 4 displays three data sets selected from all blind 

tests that yield to the lowest, median and the highest 

absolute relative error. The predictions made by trained 

proxy (Y) are compared with the observed simulation 
targets (T) in both CO2 storage and cumulative oil 



production time series. A lower absolute relative error 

indicates a higher accuracy of predictions made by trained 

neural network proxy compared with observed simulation 

results. Among the 597 sets of blind test data, the worst 

one has a highest error of 2.61%, and this is the only one 

found to have an error lager than 2% (upper two plots in 
Figure 4). The median case (median two plots in Figure 4 

) and best case (lower two plots in Figure 4) have absolute 

relative error of 0.49% and 0.30% respectively. Although 

there exists some difference between proxy predictions 

and simulation targets, those cases with relatively higher 

errors only take a small part of all blind tests data. Figure 

3 and Figure 4 strongly support that the proxy trained 

using optimal architecture is robust to make predictions 

matching well with observed simulation results from high-

fidelity numerical model. The trained proxy can handle 

data with broad-range input parameters and make accurate 

predictions.  

B. Pareto Front 

The trained proxy using optimal architecture is utilized 

with MOPSO to generate the Pareto Front of two 

objectives considered in this work: predicted cumulative 

oil production (f1, ×107 barrels) and predicted CO2 storage 
(f2, ×106 metric ton) at the end of next 20 years. The setup 

of MOPSO is listed in TABLE II. 

TABLE II MOPSO Setup 

Parameter Value 

Population size 300 

Repository size 200 

Inertia weight 0.4 

Individual confidence factor 2.0 

Swarm confidence factor 2.0 

Uniform mutation percentage 0.5 

Maximum number of generations 10,000 and 100,000 

The repository size is set to be 200, which means the 
developed Pareto front will contain 200 nondominated 

solutions. The generated Pareto front of two objectives are 

displayed in Figure 5. 
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Figure 5 Pareto Front of Two Objectives Generated after 10,000 

Generations and 100,000 Generations  

A maximum of 10,000 generations was firstly set to 
generate the Pareto front, which is showed as the upper 

plot in Figure 5. Then, generations is augmented to 

100,000 to generate the Pareto front once again to 

evaluate stability of developed Pareto front. It is found 

these two generated Pareto fronts are almost the same, 
indicating the stabilization of Pareto front. Figure 5 also 

indicates a range of f1 and f2 in generated Pareto front. As 

shown, range of f1 of nondominated results is from 1.338 

to 1.643, while range of f2 is 1.343 to 2.347. 

To validate the generated Pareto front, 5,000 

experiments with different input parameters are conducted 

using the trained proxy. The parameters of these 5,000 

experiments are randomly selected from their inputs 

range, as listed in TABLE III. 

TABLE III Training Inputs  

Parameters Unit Min Max 

Water injection period day 100 200 

Gas injection period day 200 365 

Producer BHP psi 1000 4000 

Water injection rate stb/day 1000 3500 

The results of these 5,000 random experiments are 
displayed in Figure 6. As shown, all solutions of these 

random experiments are dominated by the generated 

Pareto front. 
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Figure 6 Comparison between Pareto Front and 5000 Random 

Experiments 

The generated Pareto front is able to help make 

optimal decisions based on specific development desires. 

To use it efficiently, a trade-off factor  between two 

objectives is defined as (3): 

  ∆f2 /∆f1 | 

where ∆f1 is the change in f1, ∆f2 is the change in f2. τ can 

indicate how much incremental CO2 storage (×10-1 metric 

ton) will be gained when oil production is reduced 1 

barrel. And 1/ is used to specify how much incremental 
oil production (barrel) will be obtained when CO2 storage 

is decreased 1 ×10-1 metric ton. The value of trade-off 

factor indicates how much trade-off is needed to make 

when considering those two objectives: a larger τ  

indicates more oil production needs to be reduced when 

improving CO2 storage, and a larger 1/τ indicates more 

CO2 storage needs to be reduced when improving oil 

production. Pareto front is divided into 4 sections based 

on values of trade-off factor, which is showed in Figure 7. 
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Figure 7 Sections Division of Pareto Front Based on Trade-off Factors 

TABLE IV enumerates trade-off factors of these 4 

sections. 

TABLE IV Summary of Trade-off factors 

Section 1 2 3 4 

τ 0.5171 2.8937 0.3263 0.0200 

1/τ 1.9340 0.3456 3.0647 49.8824 

Section 2 and section 4 have such a feature that 
improvement of one objective will cost relatively small 

reduction in the other objective. However, these two 

sections only occupy a small range of developed Pareto 

front, and major part is taken by section 1 and 3, which 

indicates when dealing with these two conflict objectives, 

trade-offs between them cannot be neglected. 

Trade-off factor can be utilized to select target 
objective values based on different engineering desires. 

For example, if more oil production is emphasized in next 

20 years production, then targets objective values should 

be selected from section 3 and 4, since values of f1 of 

these sections are higher than other sections, which 
meaning a higher oil production. Comparing two sections, 

value of τ in section 3 is higher than that in section 4, 

which indicates a smaller trade-off needs to be made on 

CO2 storage to obtain same amount of incremental oil 

production. Thus, the design objective values of f1 and f2 

are recommended to be selected in section 3.  

If the project needs more CO2 to be stored in following 

20 years, then target sections should be section 1 and 

section 2 where a higher CO2 storage is observed. Section 

1 has a higher value of 1/τ, indicating a smaller trade-off 

needs to be made on oil production to obtain the same 

amount of incremental CO2 storage. Consequently, design 

objective values are recommended to be selected in 

section 1. 

Another application of this Pareto front is choose 

optimal objective function value based on engineering or 

project requirements. For example, as of February 2019, 

1.26 ×106 metric ton of purchased CO2 had been stored 

within Morrow B sand. If the project requires an amount 
of 2 ×106 CO2 metric ton storage in next 20 years, it is 

indicated by the Pareto front that the corresponding 

optimal cumulative oil production will be 1.53 ×107 

barrels. The Pareto front can also tell the parameters used 

to achieve this optimal oil production.   

C. Comparison between Pareto Front and Weighted Sum 

Method 

When deal with problem with multiple objectives to 

optimize, Weighted Sum Method (WSM) combines 

different objectives into one aggregate function. Then, 

optimization algorithm is applied incorporated with 

aggregate equation to find the optimal solution. For 

comparison purpose, the aggregate equation (4) is also 

utilized in this work to find the optimal solution for these 

two objective functions. 

 ft = f1 + f2  

where ft  is the combined objective function of f1 and f2, its 

unit is 106 metric ton CO2 storage + 107 barrels oil. 

Particle swarm optimization is applied coupled with ft 

to find the best solution and it found an optimal solution 

with a value of 3.673. Then, the values of f1 + f2 of all 

solutions on Pareto front is calculated and plotted in 
Figure 8. It is found that the highest value of f1 + f2  in all 

Pareto front particles is 3.689, which is even higher than 

the solution found by using aggregate equation.  

WSM:3.673

WSM:3.673

3.673
3.685

3.689

 

Figure 8 Comparison between Optimal Solution Found Using Aggregate 

Equation Coupled with PSO. The right Plot is Zoom in the Overlapped 
Part of the Left Plot 

To furtherly investigate the difference between Pareto 

front and aggregate equation method, 3 solutions (cases) 

are picked from Pareto front to compare them with the 

unique optimal solution found using WSM. TABLE V 

lists ft values of these four solutions. 

TABLE V Comparasion between Unique Solutions Found Using WSM 

and Solutions Found Using Pareto Front 

Case WSM 165 175 200 

f1 + f2 3.673 3.673 3.689 3.685 

 

 

Figure 9 Cumulative Oil Production and CO2 Storage Time Series of 4 

Cases 

It is found that Case 165 has the same ft value with 

optimal solution found by PSO; Case 175 and Case 200 



have even higher values. Optimal solutions found on 

Pareto front is the Case 175 with the value of 3.689. The 

cumulative oil production and CO2 storage time series of 

these 4 cases are displayed in Figure 9. 

There exists obvious difference between those 4 cases 

in their cumulative oil production and CO2 storage time 

series. The comparison shows that:  

1)  Pareto front is capable to find a solution with a 

higher value of ft than using WSM;  

2) Pareto front will find all possible combinations of f1  

and f2  to obtain the same value of ft . 

CONCLUSION 

This work presents a robust machine-learning based 

computational framework that couples multi-layer neural 

network proxies and multi-objective particle swarm 

optimizer to design an active CO2-WAG project 

undergoing at Farnsworth Unit. Significant conclusions 

obtained from this work involve: 

(1) Developed Pareto front can indicate a range of 

non-dominated solutions of multi-objectives, and each of 

these solutions is with Pareto optimum so that one 

objective cannot be improved without impairing the other 

one. Since each solution is resulted from a combination of 

operational parameters, Pareto front will provide more 

options for project engineers to design a CO2-WAG 

project. 

(2) In this work, two trade-off factors are defined to 

use developed Pareto front more efficiently and hence 

assisting decision maker to make a decision on quick 
selection of objective values. Three applications cases of 

the trade-off factor are proposed as examples.  

(3) For given criteria to determine optima, Pareto front 

proves the existence of non-unique solutions that result in 
the same optima. In this work, if the aggregate function ft 

(Eq. 4) is used to determine optimal solution, it is 

observed that there exist different solutions with the same 

or very close value of ft . Thus for those works employing 

WSM to transfer MOP to SOP, it is possibly found that 

various engineering designs can reach the same decision-

making criteria, which gives engineers more flexibility to 

design a project to meet a certain objective function. 

(4) In engineering practices, decision making could be 

restricted by various operational or engineering 

constraints. By using Pareto front, engineers can firstly 

choose all possible solutions that satisfy required 

objective functions, then filtering out those solutions meet 

with project design constraints. This scheme demonstrates 

to be an efficient and fast method to design a project with 

constraints to be considered. 

The proposed optimization protocol brings new 

insights to optimization of MOPs in petroleum and energy 

industry. It would serve as a benchmark solution to MOPs 
for those fields or projects with conflict objectives to 

optimize. 
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