Ultra-permeable polymeric membranes containing ZIF-8 nanoparticles for CO₂ capture

1st Leiqing Hu^{1,2} ¹Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York ² State Key Laboratory of Clean Energy Utilization, Zhejiang Buffalo, USA leiqinghu@zju.edu.cn

2nd Haiqing Lin^{1*} ¹Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, USA haiqingl@buffalo.edu 3rd Jun Cheng^{2*} ² State Key Laboratory of Clean Energy Utilization, Zhejiang University Hangzhou, China juncheng@zju.edu.cn

Abstract-Membrane technology is an attractive approach for CO₂ capture from flue gas derived from coal-power plants, due to its inherent advantages such as high energy-efficiency, small footprint and potentially low cost. The state-of-theart membranes are based on polar poly(ethylene oxide) (PEO), which exhibit high CO₂ permeability and high CO₂/N₂ selectivity. In this work, these PEO containing materials were doped with zeolitic imidazolate framework (ZIF-8) nanoparticles to improve CO₂ permeability. Specifically, ZIF-8 was incorporated into polymers prepared from poly(ethylene glycol) diacrylate (PEGDA). These ZIF-8 nanoparticles had high porosities and average pore aperture of 0.34 nm that was between the molecule size of CO₂ (0.33 nm) and N₂ (0.364 nm), indicating their potential of achieving high CO₂ permeability and CO₂/N₂ selectivity. The in situ synthesis of ZIF-8 provided uniform nanoparticle size of about 100 nm, enabling a good dispersion in polymers at loadings as high as 50 wt%. Increasing the ZIF-8 loading dramatically increased CO₂ permeability. For example, adding 10 wt% ZIF-8 increased the CO₂ permeability from 130.8 Barrers in a polymer prepared from PEGDA to 318.3 Barrers without changing the CO₂/N₂ selectivity. At a loading of 50 wt%, the nanocomposite exhibited a CO₂ permeability of 1334.5 Barrers and CO₂/N₂ selectivity of 33.1 at 35 °C, which was one of the best separation properties reported in the literature.

Keywords—*CO*₂ *capture, membrane, ZIF-8, PEGDA*

I. INTRODUCTION

Nowadays, CO₂ separation is required in many fields like CO₂ capture from flue gas and syngas, purification of natural gas and biogas, etc [1]. Compared conventional CO_2 to separation technology (swing pressure adsorption and chemical absorption), membrane technology featured several advantages, such as small footprint, simplicity of operation and maintenance, high

energy efficiency and potentially low cost [2]. As a branch of polymeric membranes, PEO-based membranes, including PEOs and copolymers like Pebax, showed high CO₂ permeability and high CO₂ selectivity against other gases such as H₂, CH₄ and N₂ [3,4]. However, for CO₂/N₂ separation, due to the trade-off between selectivity and gas permeability, PEO-based membranes are generally constrained by an upper bound performance limit [5]. Mixed matrix membranes comprising polymer bulk as the continuous phase and inorganic filler as the dispersed phase open new approaches to overcome the trade-off of polymeric membranes [1]. The majority of research concerns porous fillers, which include zeolites, carbon molecular sieves, metal organic frameworks (MOFs), zeolite imidazole frameworks (ZIFs) and porous organic cages (POCs), etc [6]. MOFs are porous crystalline coordination compounds, extending in one, two or three dimensions, composed of metal atoms or clusters linked by organic ligands [7]. ZIFs are a sub-family of MOFs that have tuneable pore sizes and chemical functionality, coupled with exceptional chemical stability, and exhibit versatile structures analogous to that of inorganic zeolites [5]. Herein, ZIF-8 nanoparticles had high porosities and theoretical pore aperture of 0.34 nm that was between the molecule size of CO₂ (0.33 nm) and N₂ (0.364 nm), indicating their potential of achieving high CO_2 permeability and CO_2/N_2 selectivity. Nafisi and Hägg [8] used ZIF-8 as inorganic filler in PEBAX®2533 polymer matrix, and obtained a high CO₂ permeability of 1287 Barrers with CO₂/CH₄ and CO₂/N₂ selectivity of 32.2 and 9 respectively when the concentration of ZIF-8 up to 35%. Multilayer composite membranes containing ZIFs were also researched. Sutrisna et al. [9] prepared ZIF-8/Pebax®1657 based dense flat sheet mixed matrix membranes and hollow fibre composite membranes, and found that the addition of ZIF-8 into the Pebax matrix improved the gas permeance with small loss of gas selectivity. Besides, a permeability of 758 Barrer with

 CO_2/CH_4 selectivity of 16.1 was obtained in ZIF-8/Pebax®1657/PES flat membranes [10]. In summary, Pebax membranes containing ZIF-8 were well studied. However, other PEO-based polymers, such as PEGDA, PEGMEA, were rarely studied. Furthermore, for Pebax membranes, a relative long period was needed to evaporate solvents and form films or selective layers [11]. Therefore, the deposition and agglomeration of ZIF-8 would be happened in the solution.

In this study, pure PEGDA was adopted as PEO-based polymer materials. PEGDA showed good CO₂ permeability and CO₂/N₂ selectivity [12]. Meanwhile, relative to Pebax, PEGDA could be rapidly crosslinked and formed films under UV lights. Therefore, ZIF-8 nanoparticles could be rapidly fixed in polymer chains, enhancing the even distribution of ZIF-8 in the polymer and avoiding the deposition and agglomeration of ZIF-8. Besides, adopting ZIF-8/methanol suspension, rather than ZIF-8 powder, could avoid bulky ZIF-8 particles in the membrane and enhance selectivity. The synthesized ZIF-8 nanoparticles showed uniform size of about 100 nm. A good dispersion in polymers was obtained at loadings as high as 50 wt%.

II. Figures and Tables

The high-magnification SEM micrographs of pure ZIF-8 nanoparticles and the cross-section of representative composite membranes are shown in Fig. 1. Herein, for ZIF-8, the experiment was carried out using dried nanoparticles from the assynthesized ZIF-8 solution. The cross-section of pure cross-linked PEGDA membrane was shown in Fig. 1 (b), which was normal. By using assynthesized ZIF-8 suspensions, good dispersion and adhesion of ZIF-8 nanoparticles within the polymer matrix was obtained, even ZIF-8 loading up to 30 wt% (Fig. 1 (c) (d) and (e)). The cross-sections were homogeneous, and no aggregation of ZIF-8 particles was observed in SEM images. At higher loading of 50 wt%, continuous phase of ZIF-8 nanoparticles appeared in SEM, and the membrane became brittle and cracked easily. The method of direct mixing of as-synthesized nanoparticles in this study considerably improved the observed mixing and dispersion in polymer matrix, compared to previous work on other polymeric membranes blended with dry ZIF-8 particles [12].

Figure 1: SEM images of pure ZIF-8 nanoparticles (a) and crosssection of membranes: XLPEGDA (b), 10 wt% ZIF-8/PEGDA (c), 20 wt% ZIF-8/PEGDA (d), 30 wt% ZIF-8/PEGDA (e), and 50 wt% ZIF-8/PEGDA (f).

Table 1 present the gas transport data of pure PEGDA membrane and nanocomposite membranes with various loadings. When the ZIF-8 loading is 10 wt%, CO₂ permeability increased to more than 2.5 times, from 130.8 Barrers to 318.3 Barrers. Meanwhile the high CO2/N2 selectivity was maintained. When the ZIF-8 loading increased further, CO₂ permeability increased while CO₂/N₂ selectivity decreased slightly. At the high loading as 50 wt%, CO₂ permeability increased to more than 10 times that of the pure polymer, however, the selectivity of typical gas pairs decreased obviously. This could be attribute that the high ZIF-8 loading in the membrane cause the continuous ZIF-8 phase, which provide the inner channel for gas transport, as shown in the SEM cross-section image (Fig. 1 (f)).

TABLE 1. PURE GAS PERMEABILITY OF THE PURE PEGDA MEMBRANE AND ZIF-8/PEGDA COMPOSITE MEMBRANES. THE DATA WAS OBTAINED UNDER 35 $^{\circ}\mathrm{C}$

Sample membrane	Permeability (Barrer)		CO ₂ /N ₂ selectivity
	CO ₂	N_2	
Pure PEGDA	130.8	2.4	54.5
10 wt% ZIF-8/PEGDA	318.3	5.6	56.3
20 wt% ZIF-8/PEGDA	500.4	11.4	44.0
30 wt% ZIF-8/PEGDA	723.4	18.2	39.7
50 wt% ZIF-8/PEGDA	1334.5	40.3	33.1

Gas solubility was measured by a dual volume and dual transducer system, and gas diffusivity was

calculated through the equation 3. It can be found that both CO_2 solubility and diffusivity increased with the ZIF-8 loading. It was attributed to that ZIF-8 nanoparticles had good CO_2 adsorption ability and the pores of ZIF-8 could improve CO_2 transport through the membrane. If it is assumed that the gas adsorption ability of ZIF-8 nanoparticle and the gas solubility of the polymer PEGDA would be not affected after the ZIF-8 were loaded within PEGDA, an additive model for CO_2 sorption could be introduced. In Table 2, It can be found that the measured CO_2 solubilities of composite membranes were slightly higher than those estimated values. The increase of the gap between polymer chains could account for the phenomenon.

TABLE 2. CO_2 SOLUBILITY AND DIFFUSIVITY OF ZIF-8/PEGDA COMPOSITE MEMBRANES.

Sample	CO ₂ solubility ^a		CO ₂
membrane Measured		Estimated	diffusivity ⁵
Pure PEGDA	130.8	2.4	54.5
10 wt% ZIF- 8/PEGDA	318.3	5.6	56.3
20 wt% ZIF- 8/PEGDA	500.4	11.4	44.0
Pure ZIF-8 ^c	1334.5	40.3	33.1

(Note: ^a (10^{-3} cm³(STP)/(cm³cmHg)); ^b the values of CO₂ diffusivity are calculated through the Equation 3 and the unit of CO₂ diffusivity is 10^{-7} cm²/s; ^c the data is obtained from the literature [13].)

III Conclusions and recommendations

In summary, the ZIF-8 nanoparticles synthesized with an average size of 100 nm and were loaded into CO_2 -selective polymer (PEGDA). SEM cross-sectional images showed the good dispersion and adhesion of ZIF-8 nanoparticles within the polymer. Increasing the ZIF-8 loading dramatically increased CO_2 permeability, from 110 Barrers in a polymer prepared from PEGDA to 318.3 Barrers with a loading of 10 wt%, and to 1334.5 Barrers at a loading of 50 wt%. Meanwhile, CO_2/N_2 selectivity dropped to 33.1.

ACKNOWLEDGEMENT

This work was supported by the National key research and development program- China (2016YFE0117900), National Natural Science Foundation-China (51676171), Zhejiang Provincial Key Research and Development Program-China (2017C04001).

REFERENCES

- Ban, Y., Li, Z., Li, Y., Peng, Y., Jin, H., Jiao, W., . . . Yang, W. (2015). Confinement of Ionic Liquids in Nanocages: Tailoring the Molecular Sieving Properties of ZIF-8 for Membrane-Based CO2 Capture. Angew Chem Int Ed Engl, 54(51), 15483-15487.
- [2]. Barillas, M. K., Enick, R. M., O'Brien, M., Perry, R., Luebke, D. R., & Morreale, B. D. (2011). The CO2 permeability and mixed gas CO2/H2 selectivity of membranes composed of CO2-philic polymers. Journal Of Membrane Science, 372(1-2), 29-39.

- [3]. k, H. B., Dal-Cin, M. M., & Guiver, M. D. (2012). Advances in high permeability polymeric membrane materials for CO2 separations. Energy & Environmental Science, 5(6), 7306-7322.
- [4]. Jomekian, A., Behbahani, R. M., Mohammadi, T., & Kargari, A. (2016). CO2/CH4 separation by high performance cocasted ZIF-8/Pebax 1657/PES mixed matrix membrane. Journal Of Natural Gas Science And Engineering, 31, 562-574.
- [5]. Lin, H., Van Wagner, E., Freeman, B. D., Toy, L. G., & Gupta, R. P. (2006). Plasticization-enhanced hydrogen purification using polymeric membranes. Science, 311(5761), 639-642.
- [6]. Nafisi, V., & Hagg, M. B. (2014). Development of dual layer of ZIF-8/PEBAX-2533 mixed matrix membrane for CO2 capture. Journal Of Membrane Science, 459, 244-255.
- [7]. Ordonez, M. J. C., Balkus, K. J., Ferraris, J. P., & Musselman, I. H. (2010). Molecular sieving realized with ZIF-8/Matrimid (R) mixed-matrix membranes. Journal Of Membrane Science, 361(1-2), 28-37.
- [8]. Sabetghadam, A., Seoane, B., Keskin, D., Duim, N., Rodenas, T., Shahid, S., . . . Gascon, J. (2016). Metal Organic Framework Crystals in Mixed-Matrix Membranes: Impact of the Filler Morphology on the Gas Separation

Performance. Advanced Functional Materials, 26(18), 3154-3163.

- [9]. Song, Q. L., Nataraj, S. K., Roussenova, M. V., Tan, J. C., Hughes, D. J., Li, W., . . . Sivaniah, E. (2012). Zeolitic imidazolate framework (ZIF-8) based polymer nanocomposite membranes for gas separation. Energy & Environmental Science, 5(8), 8359-8369.
- [10]. Sutrisna, P. D., Hou, J. W., Li, H. Y., Zhang, Y. T., & Chen, V. (2017). Improved operational stability of Pebax-based gas separation membranes with ZIF-8: A comparative study of flat sheet and composite hollow fibre membranes. Journal Of Membrane Science, 524, 266-279.
- [11]. Wang, S. F., Li, X. Q., Wu, H., Tian, Z. Z., Xin, Q. P., He, G. W., . . . Guiver, M. D. (2016). Advances in high permeability polymer-based membrane materials for CO2 separations. Energy & Environmental Science, 9(6), 1863-1890.
- [12]. Yave, W., Car, A., & Peinemann, K. V. (2010). Nanostructured membrane material designed for carbon dioxide separation. Journal Of Membrane Science, 350(1-2), 124-129.
- [13]. Zhu, J. Q., Jiang, L., Dai, C. N., Yang, N., & Lei, Z. G. (2015). Gas adsorption in shaped zeolitic imidazolate framework-8. Chinese Journal of Chemical Engineering, 23(8), 1275-1282.