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Abstract—In order to solve the problems of 

deficient CO2 adsorption sites on Zn/Co zeolitic 

imidazolate frameworks(ZIFs), Zn/Co ZIFs were 

thermally treated to promote physical adsorption 

sites on Zn-N and Co-N bonds and then 
impregnated with polyethyleneimine (PEI) to 

promote -NH- and -NH2- chemical adsorption sites. 

The CO2 adsorption capacity detected on 

Micromeritics ASAP 2020C increased by 53% to 

1.07mmol/g at 298K and 1bar, when Zn/Co ZIF 

was treated at optimal temperature of 450 ºC to 

obtain the maximum Me-N2 unsaturated adsorption 

sites. This was because of a partial cleavage of 

coordination bonds between Zn-N, Co-N, C=N and 

C-N along with dissociation of rationally free

methyl groups in the framework ligands, which was
supported on density functional theory (DFT)

calculation. The Zn/Co ZIF treated at 450 ºC and

then impregnated with 40wt% PEI exhibited the

highest CO2 adsorption capacity of 1.82 mmol/g

under the condition of at 298K and 1bar, which was

2.6 times higher than that of raw Zn/Co ZIF. In

addition, this adsorbent is proved to be regenerable

and stable during 9 cycle CO2 adsorption-

desorption tests, therefore, PEI- thermally treated

Zn/Co ZIF exhibits a very promising application in

CO2 capture from flue gas and natural gas.
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Ⅰ.  INTRODUCTION 

The rapid development of global 

industrialization has resulted in growing 

concentrations of carbon dioxide(CO2) in the 

atmosphere, which has become a major 

environment problem[1] CO2 is traditionally 

removed in gas purification application by using 

alkanolamines, such as 

monoethanolamine(MEA)[2], 

diethanolamine(DEA)[3], and  

methyldiethanolamine(MDEA)[4, 5].However, this 
chemical absorption technology suffers from high 

regenerative energy consumption, solvent loss, and 

corrosion, which hinders extensive application[6]. 

Thus, it is crucial to develop innovative sorbent 

materials achieving efficient separation of CO2. 

Recently, a new class of microporous solid 

materials known as metal organic framework 

(MOFs) have emerged as potential adsorbents for 
effective separation and purification of gas 

mixtures[7-9].Despite the high number of novel 

MOFs synthesized, only a very limited number of 

them display satisfactory CO2 capture performance 

at low pressure or ambient temperature because of 

the weak interaction between CO2 and framework 

structure[10, 11] 

 Post-synthetic amine functionalization has been 

shown to be effective in improving the CO2 

adsorption capacity of MOFs by exploiting the high 

affinity between CO2 and the amine groups[12-14]. 
Functionalization of magnesium-based MOFs with 

diamines has been widely reported to improve the 

CO2 working capacity of the solids while increasing 

their CO2/N2 selective factor compared with their 

unmodified counterpart[15, 16]. Zeolitic 

imidazolate frameworks(ZIFs), a MOF sub-family 

containing a sodalite-type cage similar to zeolites 

and imidazole bridging with the metallic node(e.g., 

Zn and Co)[7], have high thermal dynamic stability, 

chemical and moisture stability. Dual metal Zn/Co 

ZIFs is a sub-family in ZIFs that is constructed by 

an easy and straightforward room temperature 
technique using both Zn(NO3)2 and Co(NO3)2 as 

the metal precursors and 2-methylimidazole as the 

linker [7]. Besides, the preparation of ZIFs is more 

convenient for large-scale industrial CO2 removal 

applications[18]. The only drawback of ZIFs is the 

lower CO2 working capacity compared to the top-

performing MOFs. Hence, it is important to 

enhance the CO2 adsorption capacity of ZIFs via 

amine functionalization. To the best of our 

knowledge, the literature on this approach is scare 

in last decade. Xian et al. synthesized novel PEI-
impregnated ZIF-8 (PEI@ZIF-8) composites for 

CO2/N2 separation[19]. In addition to post-synthetic 

amine modification of MOFs, the CO2 adsorption 

capacity of MOFs can be also increased by some 

simple methods. In 2014, Srinivas Gadipelli et al. 



 

 

modified the structure of ZIF-8 by conducting a 

thermal treatment in a nitrogen atmosphere. This 

treatment resulted in the CO2 adsorption capacity of 

ZIF-8 increasing from 0.7 mmol/g to 1.79 mmol/g 

(1bar, 298K) [21]. 

In this study, a novel PEI-thermally treated 

Zn/Co ZIF adsorbent was synthesized by 

impregnation of PEI (MW=600g/mol) on Zn/Co 

ZIF adsorbents thermally treated at specific 

temperatures.The effect of the treatment 

temperature on the CO2 working capacity of Zn/Co 
ZIF was revealed by XPS, FTIR, XRD and SEM 

analysis. Subsequently, PEI was impregnated on 

the samples in varying amounts and the CO2 

adsorption isotherms were obtained. 

Ⅱ. Figures and Tables 

 Fig. 1 shows the N2 adsorption-desorption 

isotherms and the BJH pore size distributions of the 

Zn/Co ZIF samples treated at various temperatures. 

The BET surface areas of the Zn/Co ZIF samples 

treated at 400, 450, 500°C were 1257, 1063, and 

158 m2/g, respectively, while the mean pore size 

were 2.23, 2.72 and 9.77nm, respectively. The SEM 
images of the raw Zn/Co ZIF, Zn/Co ZIF treated at 

various temperatures and PEI impregnate treated 

Zn/Co ZIF sample are given in Fig.2. The Zn/Co 

ZIF particles were regular dodecahedron and the 

particle diameter ranged from 100 to 120nm. SEM 

images confirm that PEI was successfully loading 

on the Zn/Co ZIF particles. 
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Figure 1 N2-adsorption desorption isotherm (A) and pore size 

distributions (B) of Zn/Co ZIF adsorbents treated at various 

temperature. 

 
(a) raw Zn/Co ZIF 

 
(b) Zn/Co ZIF treated at 450℃ 

 
(c) Zn/Co ZIF treated at 500℃ 

(d) Zn/Co ZIF (treated at 450℃) impregnated with 

polyethyleneimine (PEI) 

Fig 2. SEM images of Zn/Co ZIF adsorbents treated at various 

temperatures 



 

 

In order to obtain the optimum temperature for 

treating the Zn/Co ZIF samples, three different 

temperatures (400, 450, and 500°C) were used for 

the initial Zn/Co ZIF. The CO2 adsorption 

isotherms of the samples were measured at 298 K, 

Fig. 3 (a). Undoubtedly, the optimized structure of 

Zn/Co ZIF samples after the thermal treated 

produced a remarkable enhancement of the CO2 

adsorption capacity. MOFs having open metal 

centers (such as Mg-MOF-74 and, HKUST-1) 

exhibited significantly higher working capacities 
compared to fully coordinated metal MOFs (e.g., 

ZIF-8, ZIF-67, and MOF-5)[12,16]. The metals (Zn 

or Co) in the raw Zn/Co ZIF were fully coordinated 

(Me-N4, each metal center coordinate to four 

nitrogen atoms of four discrete ligands). After the 

thermally treated, part of the Zn-N and Co-N bonds 

were broken, and the bonding mode between the 

metal and nitrogen shifted from Me-N4 to Me-N2 

(each metal center coordinated to two nitrogen 

atoms of two discrete ligands). Hence, the 

enhancement of the CO2 working capacity for 

Zn/Co ZIF after the thermal treatment could be 
mainly explained by the presence of exposed Zn 

and Co sites[20]. The CO2 adsorption capacity of 

the Zn/Co ZIF sample treated at 450°C increased 

by 53% (from 0.70 mmol/g to 1.07 mmol/g) 

compared to the raw Zn/Co ZIF. As the treated 

temperature increased to 500°C, the framework 

decomposed and this was reveal by the marked 

reduction of the CO2 uptake, (only 0.75mmol/g at 

298 K and, 1 bar). This high temperature let to the 

decomposition of the main framework structure, 

negatively affecting the CO2 adsorption 
performance. Fig. 3 (b) shows the CO2 adsorption 

isotherm of PEI-thermally treated Zn/Co ZIF 

samples with different loadings measured by our 

homemade experiment instrument at 298 K and, 

1bar. CO2 adsorption capacity of the samples first 

increased and then decreased with the increasing of 

PEI loading. The CO2 working capacity of the 20, 

30, 40, 50, 60 wt% PEI impregnated samples were 

1.27mmol/g(0.27mol CO2/mol NH2 group), 

1.48mmol/g(0.21mol CO2/ mol NH2 group), 1.82 

mmol/g (0.20mol CO2/ mol NH2 group), 

1.39mmol/g(0.12mol CO2/ mol NH2 group), 
1.35mmol/g(0.10mol CO2/ mol NH2) group, 

respectively, exhibiting higher working capacities 

than the non-impregnated samples.  

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

1.2

C
O

2
 q

u
an

ti
ty

 a
d

so
rb

ed
(m

m
o

l/
g

)

Absolute pressure(kPa)

 Raw Zn/Co ZIF

 Treated at 400C

 Treated at 450C

 Treated at 500C

0 20 40 60 80 100 120

0.0

0.5

1.0

1.5

2.0

C
O

2
 q

u
an

ti
ty

 a
d
so

rb
ed

(m
m

o
l/

g
)

Adsorption time(min)

 without PEI

 20 wt% PEI

 30 wt% PEI

 40 wt% PEI

 50 wt% PEI

 60 wt% PEI

 
Fig.3 CO2 adsorption isotherms (at 298 K): Zn/Co ZIF 

adsorbents treated at  various temperatures(a), Zn/Co ZIF 

adsorbents (treated at 450°C) impregnated with 

polyethyleneimine (PEI) (b) 

Ⅲ Conclusions and recommendations 

A novel PEI- thermally treated Zn/Co ZIF 
adsorbent through postsynthetic functionalization 

was synthesized for the capture of CO2.This solid 

was firstly treated below the decomposition 

temperature and then functionalized with amine 

groups (PEI) to enhance the CO2 working capacity. 

The CO2 adsorption capacity of Zn/Co ZIF 

improved significantly(by 53%), from 0.7 mmol/g 

of raw Zn/Co ZIF to 1.07 mmol/g at 1bar and 298K, 

under the optimal treatment temperature condition 

at 450°C. The CO2 working capacity increased with 

PEI loading and reached a maximum for 40wt% 

PEI (1.82mmol/g at 298 K, 1 bar) , 2.6 times higher 
than that of the raw Zn/Co ZIF. 
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