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ABSTRACT 

An energy management strategy based on double 

deep Q-learning algorithm is proposed for a Series-

Parallel Hybrid Bus. The models of powertrain 

configuration and its main components are first 

established. Subsequently, a rule-based energy 

management strategy will be proposed. The China 

typical urban driving cycle (CTUDC) is used to evaluate 

the fuel economy performance of the two strategies 

studied in this paper. The simulation result indicates 

that the energy management strategy based on 

reinforcement learning decreased the fuel 

consumption by 7.3% per 100km compared to rule-

based strategy. 

Keywords: Series-Parallel Hybrid Bus; energy 

management; rule-based; double deep Q-learning 

1. INTRODUCTION 

Air quality has become a serious concern in cities 

and urban areas in recent years. Environmental 

concerns and the security of the energy supply have 

pushed Chinese government to explore environ- 

mentally friendly, efficient and sustainable 

transportation solution[1]. In response to these crises, 

Hybrid electric vehicles (HEV) / Plug-in  hybrid  

electric vehicles (PHEV) have been proved an effective 

solution for the energy and environmental problems. 

The widely accepted HEV configurations can be 

classified into three categories: series, parallel and 

power-split [2]. The series-parallel configuration HEV 

combines the advantages of both series and parallel 

configurations and has been adopted by an increasing 

number of bus OEMs (such as Yutong and Higer) in 

China[1]. As a result of multiple power sources, HEVs 

have more degrees of freedom to supply the power 

demand, compared with the conventional vehicles[3]. 

Therefore, the energy management strategy targeting 

to maximize the overall powertrain efficiency and 

minimize fuel consumption will becoming the research 

focus of the Serial–Parallel Hybrid Electric Bus. 

Energy management strategies for HEV can be 

generally classified into two typical types: rule-based 

and optimization-based. Rule-based energy 

management strategies have been widely used due to 

their reliability, but they are all sub-optimal and highly 

dependent on engineering experience. Charge 

depleting–charge sustaining (CD–CS) mode is one of 

the typical instances[3]. The optimization-based 

strategies  adjust the control variables by minimizing 

the predefined cost function under feasible 

constraints. Typical energy management strategies 

based on optimization include Equivalent 

Consumption Minimization Strategy (ECMS), model 

predictive control (MPC), dynamic programming 

algorithm (DP) [4,5], etc. In general, the strategy based 

on optimization requires a large amount of 

computation and is difficult to guarantee real-time 

performance. 

This paper provides a powertrain configuration of 

a Series-Parallel Hybrid Electric Bus, and a rule-based 

energy management strategy for the bus will be 

proposed. Then, a new strategy based on 

reinforcement learning will be used to improve the 

performance. 

The reminder of this paper is organize as follows: 

In section 2, the bus configuration model is introduced. 

The rule-based strategy is developed in section 3 and 

an improved energy management strategy based on 

reinforcement learning is presented in section 4. The 

simulation results are shown in section 5. Finally, 

comments and conclusions are discussed. 



 

2. SERIAL-PARALLEL HYBRID BUS MODEL 

2.1 System configuration 

The powertrain configuration of the Series-Parallel 

Hybrid Electric Bus studied in this paper is shown in 

figure 1，which consists of a Compressed Natural Gas 

(CNG) engine, an integrated starting generator (ISG), a 

traction motor, a battery pack, and an electro-

controlled clutch which be used to implement the 

switch between serial and parallel modes.  
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Fig. 1 Architecture of the Series-Parallel Hybrid Electric Bus 

2.2 Power Demand Model 

When the driving cycle is known a priori, the 

power demand reqP
 can be defined as: 
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Where r
F  is the rolling resistance, m  is the 

total mass of the vehicle, g is the gravity coefficient, 

and rf is the coefficient of rolling resistance. i
F  is 

the inertial force, a  is the acceleration. aF  is the 

aerodynamic drag, dC is the aerodynamic coefficient, 

and A  is the fronted area. v  is the vehicle speed 

2.3 Powertrain model 

The experimental approach is adopted to model 

the engine, ignoring the dynamic characteristics of the 

engine, the quasi-static model of the engine is 

established. Therefore, engine fuel consumption is 

only related to two parameters: current engine speed 

and actual engine torque. The engine fuel 

consumption map is expressed as a non-linear 3-D 

MAP in fig.2. 

 
Fig. 2 Engine map 

The powertrain configuration in this research 

choose a 510V Li-ion battery as the electricity sources. 

The state of charge (SOC) in the battery is chosen as 

the state variable. A simple and effective internal 

resistance battery model is adopted to describe the 

basic dynamics as follows: 
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Which ocV denotes the open-circuit voltage, intR

denotes the internal resistance, and batP denotes the 

battery load power. All of them are a function of SOC. 

3. RULE-BASED ENERGY MANAGEMENT 

APPROACH 

Rule-based energy management strategy is widely 

used due to its reliability. Furthermore， the rule-

based energy management is simple to implement in 

real-time control system. In this paper, the Series-

Parallel Hybrid Bus work mode division depends on 

battery SOC, power requirements and vehicle Velocity. 

The work condition rules are simplified as figure 3a 

and figure 3b. 

 

Fig. 3a Working mode with SOC below 65% 



 

 

Fig. 3b Working mode with SOC above 65% 

When SOC < 65%, The ISG and engine is shutdown 

when vehicle power demand is under the clutch 

engaging curve, so the efficiency loss caused by the 

growth of energy circulation can be avoided. In this 

Series mode, the clutch is disengaged and Bus is 

driving by motor only. Further, when the vehicle 

power demand is above the clutch engaging curve and 

Bus drives at high velocity, the clutch will be engaged, 

and the Bus will be working in the Parallel mode. 

Considering the efficiency of the engine, some of the 

engine power will be used for driving, and the rest will 

be used for ISG motor generation. When the demand 

power of the vehicle is larger than the ISG power 

generation curve, the engine will work in the high 

efficient zone, and Bus is driving by engine only. In 

addition to all above, when the vehicle speed is less 

than 27km/h, the Bus is in EV mode with only the 

motor driving. 

When SOC > 65%, and the driving demand is 

satisfied by the traction motor, the energy will be 

provided by only the power battery pack. In this mode, 

the regenerative braking is not permitted to avoid the 

possible over charging due to the higher SOC and the 

lower charge efficiency. Furthermore, when the power 

demand of the vehicle is greater than the power of the 

traction motor in the high-efficiency zone, the clutch 

will be engaged and the Bus will enter parallel mode. 

Bus will be driven by engine only.  

It is worth mentioning that the power system 

configuration involved in this paper has a working 

mode that the bus is driven by a combination of engine, 

ISG and drive motor. This operation mode usually 

occurs when the Bus is running at high speed for rapid 

acceleration. This kind of operation condition is rarely 

seen for city buses, so it will be not discussed in this 

paper. 

4. ENERGY MANAGEMENT APPROACH BASED ON 

DOUBLE DEEP Q LEARNING 

For the energy management problem of hybrid 

electric vehicles, the demand power of vehicle driving 

cycle changes randomly, which can be considered as 

Markov decision processes(MDP). According to 

literature [4], the driving schedule can be considered a 

finite MDP. In this article, the driving schedule will be 

redefined as: 
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tS
 represents the set of state variables for each 

step. tA  is the set of actions for each step. clutchs  is 

the state of clutch, furthermore, 0clutchs   represents 

the clutch is engaged, while 1clutchs   means that the 

clutch is disengaged, isgn
is the speed of ISG, eT  is the 

torque of CNG engine, mT  is the torque of driving 

motor. tR  represents the reward for each actions 

taking, which is a function of SOC and CNG engine fuel 

consumption ( )fuel t .  

The reinforcement learning algorithm can 

effectively improve the control performance for 

Markov decision problems. The basic idea of 

reinforcement learning is creating a learning agent 

which can be able to sense the state of environment 

and to take actions that affect the state. The 

cumulative reward signal of learning agent can be 

maximized through the trial-and-error based on the 

analysis of actions that the agent takes [5]. 

Double deep Q-learning (DDQL) is the modification 

algorithm of a classical reinforcement learning 

algorithm which is called deep Q-learning(DQL). 

Standard DQL derives the optimal control strategy

by maximizing the mathematical expectation of the 

total reward tR .Consequently, the optimal value 

function Q

which guides the decision process of 

policy can be defined as distribution over the given 

current state tS  and control action tA : 
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Therefore, the iterative update process can be 
expressed as: 
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where α ∈ [0,1] means the decaying factor 

influencing the learning rate. 

In the DDQL algorithm, two value functions 
( , ; )Q S A  and ( , ; )Q S A    with two different sets of 

weights   and   are used to decouple the action 

selection from the reward evaluation in the formula (8) 

and (9), which can avoid the overoptimistic value 

estimates in the standard DQL algorithm resulting by 

the selections of overestimated values[6]. Thus, target 

values and the iteration process of DDQL can be 

redefined as: 
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5. RESULTS AND DISCUSSION 

In this section, the results obtained from the 

aforementioned rule-based strategy and DDQL are 

compared and discussed. The China typical urban  

driving cycle (CTUDC) is used for the simulation to 

evaluate the fuel economy. Simulation results in figure 

7 show that both rule-based and ddql-based energy 

management strategies can maintain battery power 

within the set range. In order to compare the fuel 

consumption optimizations of the two algorithms, this 

paper will adopt the conversion method of battery 

power to fuel consumption proposed in literature [7]. 

 
Fig. 4 SOC trajectories in Rule-based and DDQL 

  

Fig. 5 Engine points in Rule-based and DDQL algorithms 

The engine work point distributions of rule-based 

and DDQL strategy are shown in figure 5. Although the 

rule-based strategy can effectively control more 

engine operating points in the efficient area, the ddql-

based strategy can further optimize the distribution of 

operating points to achieve better fuel economy.  

Finally, the accurate fuel consumption statistics 

compensated by SOC-correction method are shown in 

table 2. The results indicates that, for the Series-

Parallel Hybrid Electric Bus studied in this paper, the 

economic performance is much better than the 

conventional bus with same class. Furthermore, 

energy management strategy based on DDQL can 

achieve better fuel consumption. The fuel 

consumption result is 7.3% lower than the rule-based 

algorithm. 

TABLE. 2 COMPARISON OF FUEL CONSUMPTION 

Algorithm 
Fuel consumption 

(L/100km) 

Fuel 

economy(%) 

Rule-based 20.99 61.6 

DDQL 18.50 54.3 

Conventional[8] 34.10 100 

6. CONCLUSION 

In this paper, a Series-Parallel Hybrid Electric Bus 

is introduced and its powertrain configuration model 

is proposed. Subsequently, rule-based and DDQL-

based energy management algorithms will be 

proposed respectively. The performance of the 

proposed strategies are evaluated by using CTUDC. 

From simulation results indicate that DDQL-based 

Energy management strategy achieves significant fuel 

economy improvement compared with rule-based 

strategy, the fuel consumption decreased from 

20.99L/100km to 18.5L/100km. 
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