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ABSTRACT 
Optimization of building design has the promise to sub-
stantially reduce building energy consumption. Though 
typically considered in early design, we demonstrate in 
this paper that optimal re-design of building layouts has 
the potential to reduce energy use throughout the life-
time of a building and as occupant dynamics evolve over 
time. We introduce novel methods for (1) inferring occu-
pant activities and schedules based on plug load sensor 
data, and (2) clustering occupants by activity patterns to 
create optimal layouts that take advantage of controlla-
ble HVAC and lighting systems. Combining data from a 
real small office building with the Department of En-
ergy’s small office reference building, we demonstrate 
that this near zero-cost occupant re-alignment strategy 
can save 3.3% in annual energy consumption. 
Keywords: advanced energy technologies, energy con-
servation in buildings  

1. INTRODUCTION 
Building design decisions are the foundation for a build-
ing’s energy performance. These choices are typically re-
searched and made in the context of new construction. 
Research has shown that optimization algorithms can be 
used to aid building design by addressing physical param-
eters (e.g., materiality, building orientation, or window 
sizing) [1,2]. While these physical parameters can be cru-
cial decision points for energy performance—especially 
when considered in early design stages [1]—recent work 
has shown that it is the building occupant that is the larg-
est driver of building energy consumption [3]. Retrofit-
ting and recommissioning existing buildings represents 
one of the largest pathways to decrease energy usage 
and associated environmental impacts [4]. Simultane-
ously, the explosion of real-time sensor data within 
buildings has created an opportunity to deepen our 

understanding of how occupants interact with their 
building and inform re-design interventions that can en-
hance a building’s operation and energy performance. 

Occupant behavior has been described broadly in re-
cent work, ranging in detail from simple presence/ab-
sence data to occupant adaptive behaviors such as inter-
action with windows or thermostats [5]. One of the key 
aspects of occupant behavior when it comes to zone-
level building control is space utilization—granular infor-
mation about which spaces are being used at what time 
[6]. If we can more closely match the operation of zone-
level building controls—heating, ventilation, and air con-
ditioning (HVAC) and lighting—with occupants’ utiliza-
tion of space, we can reduce the amount of time spaces 
are conditioned or lighted unnecessarily. Modern HVAC 
and lighting systems are moving toward more real-time 
control, and new research is focusing on human-in-the-
loop control of building systems [3]. However, two open 
questions remain: (1) How can we leverage new data-
streams in buildings to infer true occupancy patterns?; (2) 
Can we recommend new layouts in those buildings that 
take advantage of such highly controllable building sys-
tems, thereby improving energy efficiency? Our hypoth-
esis is that data-driven clustering of occupants with sim-
ilar space-use patterns can reduce the operation time of 
HVAC and lighting systems and reduce energy usage. 

In this paper, we introduce a novel method for cre-
ating new occupant layouts based on analysis of granular 
sensor data. We infer zone-level occupant schedules 
from plug-load energy data describing occupant activity 
patterns. We then use an unsupervised hierarchical clus-
tering algorithm to spatially group occupants with similar 
patterns. By combining real data from a test-bed office 
building in Berkeley, CA with the Department of Energy 
(DOE) small office reference building, we simulate the 
energy impacts of our occupant re-alignment strategy. 
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Our work introduces the opportunity to continually con-
sider energy-related design decisions past initial occu-
pancy and throughout the lifetime of the building. 

2. METHODOLOGY  
In this section, we outline our methodology for simulat-
ing building energy consumption with an occupant-
driven approach and optimizing the layout of an office 
building using real data on occupant activities. We first 
map plug-load sensor data to occupant activities; we 
then develop zone-level schedules based on those activ-
ities. Finally, we use a hierarchical clustering algorithm to 
assign similar occupants to the same zones and simulate 
the change in energy consumption given the new layout. 

2.1 Creating zone-level schedules  

Energy consumption data at the individual desk level col-
lected through plug-load sensors at 15-minute intervals 
form the basis for our method. Using the methodology 
introduced in [6], we map plug load energy consumption 
data (𝐗",$  indexed by occupant 𝑖 and day 𝑑) to activity 
states of occupants: 𝐗",$ ↦ 	𝐒",$. Through this process, 
we gain a highly-granular sense of space utilization 
across the floorplan and throughout the thermal zones 
of a building. Consistent with previous work, we define 
three possible states: low, medium, and high energy. 

Given these activity states of occupants, we are able 
to define zone-level occupancy schedules on a percent-
age basis (i.e., full occupancy = 100%). In our previous 
work, we have shown that the low energy state can be 
associated with occupant absence from their desk with 
high confidence. When occupants are above the low 
state, we can take one of two perspectives: we can con-
servatively assume that all occupants in the medium or 
high states are present in the space, or we can optimisti-
cally assume that only occupants in the high state are 
present in the space. The reality is likely somewhere in 
the middle, so these perspectives represent virtual upper 
and lower bounds on the true occupancy profiles. Figure 
1 shows a toy example illustrating these two perspec-
tives, where 1 indicates the low energy state and 3 the 
high energy state. 

It is important to note that our state classification al-
gorithm was designed to more likely make false positive 
errors (type I error) (i.e., where the occupant is consid-
ered present when in reality they are not) compared with 
false negative errors (type II).  

2.2 Optimizing layout by clustering occupants 

Given activity data for all occupants across the floorplan, 
we cluster occupants who have similar patterns into the 
same zones. The number of clusters can be naturally de-
fined as the number of available zones in the building. 
Assuming the building is fully occupied, the size of the 
clusters can also be defined as the number of occupants 
per zone. Traditional clustering techniques allow for the 
specification of the number of clusters, but specification 
of the cluster sizes is rare. We therefore take a hierar-
chical clustering approach that allows for user determi-
nation of the exact clusters based on a dendrogram. We 
employ an agglomerative approach, in which each occu-
pant starts in their own cluster, and clusters are joined 
based on the distances between occupants’ activity vec-
tors. We define the distance between two activity vec-
tors as the Euclidean distance, and we utilize the com-
plete linkage criterion to agglomerate clusters. The com-
plete linkage criterion minimizes the maximum distance 
between the clusters being merged. Yang et al. used a 
similar agglomerative approach to reduce occupant di-
versity in zones [7]. 

Using this agglomerative approach, occupants can be 
manually assigned into clusters based on the reading of 
a dendrogram (see section 3 for an illustrative example). 
Then, following the steps outlined in section 2.1, we cre-
ate occupancy schedules for this new optimized layout. 

2.3 Simulating building energy performance with an oc-
cupant-driven approach 

Given the non-optimized and optimized layouts, we sim-
ulate the energy consumption of our commercial build-
ing using EnergyPlus [8] and OpenStudio [9]. The occu-
pant-driven variables we consider in EnergyPlus are 
schedules associated with occupancy, lighting, equip-
ment, and HVAC availability. We assume that real data 
on occupant activities—our conservative and optimistic 
schedules—can accurately serve as the occupant level 
schedule and the equipment schedules in EnergyPlus.  

We consider a mixed-mode control schedule for 
HVAC and lighting, whereby a combination of automated 
controls and occupant behavior defines their operation. 
We assume that once occupants are present in the zone, 
HVAC and lighting are available and shared among all oc-
cupants. Once all occupants vacate the zone, HVAC and 

Figure 1: Demonstration of conservative and opti-
mistic schedule creation based on activity. states. 
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lighting are no longer available. While these are some-
what strong assumptions on HVAC and lighting perfor-
mance, they are held consistent in both the non-opti-
mized and optimized simulations, thus allowing for the 
comparison between scenarios. Because any inference 
from sensor data can be subject to the occasional false 
positive, we assume that any occupancy inferred at mid-
night in a commercial building is an error. Once occu-
pancy increases from the midnight occupancy level—
typically zero, but occasionally small—we make HVAC 
and lighting fully available. Once it decreases below the 
midnight level, we make HVAC and lighting unavailable. 

Having calculated occupancy profiles for the two lay-
outs and assigned them to the occupancy, equipment, 
lighting, and HVAC schedules, we run EnergyPlus through 
OpenStudio—holding all other variables constant. 

3. CASE STUDY: SMALL OFFICE BUILDING 
We demonstrate our methodology using the DOE’s small 
commercial reference building geometry/systems com-
bined with real sensor data from a small office building. 

We deployed 18 Zooz Z-Wave [10] plug-load energy 
sensors at an office building in Berkeley, CA. The sensors 
recorded energy consumption values at 1-minute inter-
vals, which we aggregated to 15 minutes (consistent with 
previous work [6]). We made no restriction on the types 
of equipment that could be connected to the sensors, 
making use of the deliberately adaptable methodology 
from our previous work. We collected data from August 
9, 2018 to May 5, 2019 and developed schedules as de-
scribed in section 2.1. To account for seasonal effects on 
behavior, we mapped these schedules to the default year 
in OpenStudio, where the data from January—though 
not collected first—was assigned to the first month of 
the year. We filled the gap in the data (May 5–August 9) 
with the default schedules from the reference building. 
We divided the building into four zones based on the 
building floorplan, with 8, 5, 5, and 0 occupants located 
in each zone (the last zone is a storage space). Figure 3 
shows an example schedule from a single day using the 
conservative perspective after clustering). 

The DOE small commercial reference building is com-
prised of 5 zones, including 4 perimeter zones and 1 core 
zone. The reference building is designed for 28 occu-
pants, with an even distribution across the building by 
floor area. We assign 8 occupants from the existing build-
ing zone of size 8 to the south-facing zone, and 5 each to 
the east and west zones based on the zones in the exist-
ing building. These values are held constant in both the 
non-optimized and optimized layouts, but the assign-
ment of occupants to these zones changes after optimi-
zation. We assign 0 occupants to the north zone and the 
core zone in order to match the total occupancy of the 
Berkeley office building. We locate the reference build-
ing in the AHSRAE climate zone of 3C, which is based on 
data from San Francisco, CA and includes Berkeley, CA. 

We cluster the occupants on their activity state data 
according to the process described in section 2.2. The 
dendrogram from the hierarchical clustering algorithm is 
shown in Figure 2, in which we see three relatively strong 
clusters of size 3, 4, and 8 as well as three relative outli-
ers. We assign the group of 8 to the zone of size 8, and 
we assign the clusters of size 3 and 4 to the east and west 
zones of size 5. We assign occupants 17 and 11 to the 
cluster of size 3 and occupant 0 to the cluster of size 4. 

Table 1 shows the total energy simulation results for 
the different scenarios considered, as well as the total 
amount of time throughout the year that HVAC and light-
ing systems are available (expressed as a percentage). As 
we can see, adapting the schedules to reflect the true 
states of occupancy in this building causes a dramatic re-
duction in total energy consumption. Moreover, optimiz-
ing the layout through occupant clustering results in a 
further reduction in energy consumption—both in the 
conservative and the optimistic cases. The reduction as-
sociated with the conservative schedules is significantly 
more than in the optimistic scenario (3.3% vs. 0.3%). In 

Figure 2: Agglomerative clustering dendrogram 
showing 3 relatively strong clusters and 3 outliers. 

Figure 3: Sample generated schedule (after clustering). 
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other words, the clustering is more effective in the con-
servative scenario. We interpret this to mean that our 
clustering method is better able to capture transitions 
between the low and medium energy states (as the con-
servative schedule only requires an occupant to be in a 
medium energy state to be considered present). This re-
sult demonstrates the opportunity to develop more ad-
vanced clustering methods that leverage the assump-
tions embedded in the meaning of the energy states as 
well as the conservative and optimistic viewpoints.  

Figure 4 shows the comparison among the four sim-
ulations. It is clear from this figure that the largest 
change from optimization came in plug-load energy con-
sumption in the conservative scenario. The clustering op-
timization reduced overall HVAC and lighting as well, but 
to a lesser extent. 

4. CONCLUSIONS AND FUTURE WORK 
In this paper, we introduce a method for creating zone-
level occupant schedules based on plug-load energy data 
collected at the desk level. We demonstrate that the 
temporal and spatial granularity in the data can create 
more realistic—while also conservative—schedules of 
occupancy that can be used to simulate the energy per-
formance of occupant-adaptive building controls. We 
also introduce a method for clustering occupants based 
on similarity in activity patterns, and we find that doing 
so can save energy by leveraging localized control of 
building systems. We note that future work should con-
sider developing clustering strategies that incorporate 
domain knowledge about the operation of HVAC and 
lighting systems (e.g., clustering occupants based on ar-
rival time in the morning or departing time in the even-
ing). In future work, we aim to combine energy-driven 
optimization of layouts with optimization of other occu-
pant goals—such as collaboration and productivity in an 
organization. In the end, data-driven analysis and optimi-
zation of occupant-building dynamics will enable us to 
rethink how buildings and organizations can be co-opti-
mally managed. 
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Figure 4: Comparison of energy consumption for each sce-
nario by end use and zone (HVAC reported at building level). 

Table 1: Energy consumption and HVAC/lighting availability. 

Baseline
Non-optimized 

layout with 
adjusted schedules

Optimized layout 
with adjusted 

schedules

Energy
Conservative 152.29 GJ 147.31 GJ

Optimistic 143.63 GJ 143.20 GJ

HVAC/lighting availability 
Conservative 37.46% 36.96%

Optimistic 35.99% 35.42%

* Only applies to HVAC in the baseline case

162.22 GJ

54.76%*


