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ABSTRACT 
Reinforcement learning for energy management of 

hybrid electric vehicles has become a research hotspot. 
In this paper, a deep reinforcement learning (DRL) based 
energy management strategy (EMS) combined with 
expert knowledge is proposed, and an improved 
framework of deep deterministic policy gradient is 
adopted. In order to realize a reasonable tradeoff in the 
EMS, a multi-objective function of the fuel consumption 
and the battery charge-sustaining is established. In terms 
of action space of DRL, simplified action space, i.e. the 
optimal brake specific fuel consumption (BSFC) curve, is 
applied to the engine, thereby improving the sampling 
efficiency of DRL. The simulation results demonstrate 
that the expert knowledge can improve fuel economy 
and speed up convergence efficiency of the DRL based 
EMSs. 
 
Keywords: Energy management strategy, Hybrid electric 
vehicle, Weight assignment, Expert knowledge, Deep 
deterministic policy gradient. 

NONMENCLATURE 

Abbreviations  

HEVs Hybrid electric vehicles  
DDPG Deep deterministic policy gradient 
DRL Deep reinforcement learning 
DP Dynamic programming 
EMSs Energy management strategies 
SOC State of charge 
BSFC Brake Specific Fuel Consumption 

Symbols  

ng, nout, ne 
Speed of generator, ring gear, 
engine 

Tg, Tout, Te 
Torque of generator, ring gear, 
engine 

fuel Fuel consumption 
Voc Open-circuit voltage 
Pbat The output power of battery 

Rint 
The internal resistance of charge 
and discharge 

Vfuel Fuel consumption 
SOC(t) The state of charge at time t 

SOC0 
The charge-sustaining reference 
value of SOC 

1. INTRODUCTION 
The electrification of the automobile has recently 

become a trendy topic. However, the development of 
electric vehicles encounters bottlenecks because of the 
technical challenges on the power battery and fuel cell. 
Given that, hybrid electric vehicles (HEVs) are regarded 
as an important role in reducing emissions within the 
current infrastructure [1]. In general, HEVs contain two 
or multiple power sources, and therefore the energy 
management system is an indispensable component for 
HEVs. Through appropriate strategies, it is able to 
efficiently operate multiple power sources, thereby 
reducing fuel consumption and greenhouse gas 
emissions. 

Existing energy management strategies (EMSs) are 
less adaptable to complex driving schedule or take too 
much time to optimize. Reinforcement learning (RL) 
algorithms have offered an alternative solution for the 
challenging control problem under both virtual and real-
world environments [2]. In the field of energy 
management of HEVs, related works in [3-5] have also 
shown that RL, such as Q learning, deep Q learning and 
DDPG, have a strong learning ability and adaptability 
under complex driving cycles, and consume less 
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computational resources. These studies show that RL 
approach is a potential solution for EMSs. Energy 
management of HEVs usually targets to minimize fuel 
consumption and keep battery charge-sustaining 
However, existing researches of DRL based EMSs almost 
focus on optimizing the fuel consumption and do not 
take into account the influence of weight assignment 
between energy saving and battery charge-sustaining in 
the objective function. So far no more systematic and in-
depth research has been conducted. In addition, all the 
above RL algorithms are model-free and learn optimal 
EMS solution in a "trial-and-error" manner. Model-free 
RL relies on a mass of real samples from environment, 
which often suffers from low sampling efficiency in order 
to achieve better performance [2]. 

Given those inherent problems, human expertise of 
HEVs is considered and applied to the DRL algorithm in a 
prior knowledge form. Through incorporating prior 
knowledge into the multi-objective function, the weight 
assignment between energy saving and battery charge-
sustaining is studied comprehensively. Furthermore, the 
optimal brake specific fuel consumption (BSFC) curve is 
introduced into the action space of engine, which can 
reduce the search space and enhance the sampling 
efficiency of model-free algorithm [6]. In order to avoid 
the dimension curse, the continuous state and action 
representation method, namely deep deterministic 
policy gradient (DDPG), is used in this research. 

The research encompasses three perspectives that 
contribute to relevant research: 1) the DDPG-based EMS 
combined with expert knowledge is proposed; 2) a multi-
objective reward function of EMS is established, and 
make a comprehensive study on the weight assignment 
of the multi-objective function; 3) the action space of 
DRL, namely the working range of engine, is significantly 
reduced by the optimal BSFC curve. 

2. PRIUS POWERTRAIN MODEL 
The Prius model is the second generation of the 

Toyota hybrid system, and the powertrain architecture is 
shown in Fig. 1. The powertrain configuration is mainly 
composed of a gasoline engine, a driving motor, and a 
generator, and equipped with a small capacity lithium 
battery, which can be used to drive the driving motor and 
the generator. 

The vehicle dynamic is modeled by longitudinal 
force balance equation, and the driving force of the 
vehicle is mainly provided by the engine and motor. The 
core power-split component of Prius is a planetary gear. 
Through this structure, Prius can realize the power 

coupling and adapt to different driving cycles. The engine 
and generator are respectively connected with the 
planet carrier and the sun gear of the planetary gear, and 
the ring gear is not only linked with the motor but also 
fixed with the output shaft. After passing through the 
main reducer, the power is finally transmitted to the 
wheels. 

The engine, generator and motor are modeled by 
their efficiency maps from bench experiments. The Li-ion 
battery is modeled by an internal resistance model. As 
one of the energy sources, it supplies power to the motor 
and generator.  

   
Fig. 1 The architecture of Prius powertrain 

3. METHODOLOGY 

3.1 Expert knowledge of HEVs 

In this section, there are two kinds of expert 
knowledge: the optimal BSFC curve of engine and the 
internal resistance of battery are introduced into the DRL 
based EMSs. They will act as the constraints to guide the 
EMSs towards global optimization. 

In order to achieve better fuel economy and reduce 
gas emissions, the engine should operate in the low-BSFC 
region [7]. This rule has been always incorporated into 
EMSs by expertise engineers. In order to make use of this 
expert knowledge, the action variable of DDPG based 
EMSs, namely the engine power, is set according to the 
optimal BSFC curve of engine (the red curve in engine 
map shown in Fig. 2). Therefore, the engine will work 
along the optimal BSFC curve of engine, rather than 
along the global engine map. The optimal BSFC curve of 
an engine is the minimum fuel consumption rate at a 
given engine power, which is used as the prior 
knowledge in this research. Since this method simplifies 
the action search space of engine, it enables the EMS 
controller to search optimal solution in a smaller space, 
and thereby reducing the computation time. 

In addition to the optimal BSFC curve of engine, the 
internal resistance of battery is also an important 
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influence factor. According to the characteristics of the 
battery resistance, the internal resistance is in a small 
range when the value of SOC ranges from 0.4 to 0.85, 
which ensures that the battery is in a high efficiency 
range. When the value of SOC is 0.6, the internal 
resistance of the battery is the minimum during charge-
discharge process. In this research, the original value of 
SOC is set as 0.65. 

3.2 DRL-based energy management strategy 

DRL can be used to solve the Markov decision 
process, which consists of agents and environments. In 
Fig. 2, it shows the interaction between the agent, i.e. the 
energy management strategy, and environment, i.e. the 
vehicle and driving environment, for HEV energy 
management. In this research, DDPG is introduced into 
EMSs to learn the optimal policy of the agent, and the 
state variables and action variables are set as follows: 

{

𝑆𝑡𝑎𝑡𝑒 = {𝑆𝑂𝐶, 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦, 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛}

𝐴𝑐𝑡𝑖𝑜𝑛 = {𝑒𝑛𝑔𝑖𝑛𝑒 𝑝𝑜𝑤𝑒𝑟}

𝑅𝑒𝑤𝑎𝑟𝑑 = −{𝛼[𝑓𝑢𝑒𝑙(𝑡)] + 𝛽[𝑆𝑂𝐶0 − 𝑆𝑂𝐶(𝑡)]
2}

 (1) 

The reward, namely the multi-objective reward 
function, of the DDPG based EMSs consists of two parts, 
including the instantaneous fuel consumption of the 
engine and the battery charge-sustaining. Based on the 
expert knowledge of battery above, the charge-
sustaining reference value of SOC, namely SOC0, is 
selected as 0.6 according to the minimum internal 
resistance of charge and discharge. Besides, the multi-
objective function must satisfy the constraints of upper 
and lower bounds of the battery internal resistance. 

In Eq. (1), α  represents the weight of fuel 
consumption, and β represents the weight of battery 
charge-sustaining. A key challenge of the multi-objective 
function is the weight assignment between fuel 
consumption and battery charge-sustaining, i.e. the 
configuration between α  and β. Different weights 
between them present different results. 

DDPG is an actor-critic, model-free algorithm in the 
field of DRL, which can operate over continuous state 
and action spaces. Therefore, there is no need to 
discretize the action spaces. The critic and actor are 
represented by deep neural networks, which means that 
DDPG uses multilayer perceptron to learn in large state 
and action spaces. The critic network is learned by 
Bellman equation as follow, and the actor is updated by 
applying the chain rule to the expected return in regard 
to the actor parameters [8]: 

{
 
 
 

 
 
 𝑦𝑡 = 𝑟(𝑠𝑡, 𝑎𝑡) + 𝛾𝑄

′(𝑠𝑡+1, 𝑢
′(𝑠𝑡+1|𝜃

𝑢′)|𝜃𝑄
′
)

𝐿(𝜃𝑄) = 𝐸[(𝑄(𝑠𝑡, 𝑎𝑡|𝜃
𝑄) − 𝑦𝑡)

2]

𝛻𝜃𝐿(𝜃
𝑄) = 𝐸[(𝑟 + 𝛾𝑄′(𝑠𝑡+1, 𝑎𝑡+1|𝜃

𝑄′)

     −𝑄(𝑠𝑡, 𝑎𝑡|𝜃
𝑄))𝛻𝜃𝑄(𝑠𝑡, 𝑎𝑡|𝜃

𝑄)]

∇𝜃𝜇𝐽 ≈ 𝐸[𝛻𝜃𝜇𝑄(𝑠, 𝑎|𝜃
𝑄)|𝑠=𝑠𝑡,𝑎=𝑢(𝑠𝑡|𝜃𝜇)]

        = 𝐸[𝛻𝑎𝑄(𝑠, 𝑎|𝜃
𝑄)|𝑠=𝑠𝑡,𝑎=𝑢(𝑠𝑡)𝛻𝜃𝜇𝑢(𝑠|𝜃

𝑢)|𝑠=𝑠𝑡]

(2) 
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Fig. 2 Agent-Environment interactions of DDPG 

4. RESULT 
In this section, a mixed standard driving cycle 

(NEDC, LA92, China city) is selected as the driving cycle 
to test our energy management strategy. For 
comparison, dynamic programming (DP) is used as a 
benchmark. 

4.1 Weight assignment of multi-objective function 

As stated in the section 3, the multi-objective 
function of our model contains two parts: the fuel 
consumption and the cost of battery charge-sustaining 
derived from the prior knowledge, and there must be a 
tradeoff between them. Hence, the weight assignment 
between α and β in Eq. (1) is studied in this section. For 
comparison purposes, α is fixed to 1, β is changed from 
0.3×350 to 10×350 gradually, and 350 is determined by 
100 times the maximum instantaneous fuel 
consumption. Moreover, the influence of terminal SOC is 
also taken into account in this research. 

Fig. 3 shows the comparison of the SOC trajectories 
under different weight settings. It reveals that the higher 
the β, i.e. the higher weight of battery charge-sustaining, 
the better charge-sustaining effect the SOC trajectory 
shows. In order to achieve better sustainability, the 
engine needs to run frequently to charge the battery, 
which leads to a relatively higher fuel consumption. The 
multi-objective function with the lowest weight of β 
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(0.3x350) has failed to maintain SOC above the lower 
bound. The results in Table 1 reveal the relationship 
between the fuel consumption and battery charge-
sustaining, and it can be seen that the system achieves 
the optimal balance between them with the weight of 
0.6x350. Therefore, 0.6x350 is selected as the weight of 
battery charge-sustaining in this research. 
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Fig. 3 The SOC trajectories of different weight settings 

Table 1 The comparison of different weight settings 

β Vfuel(L/1
00Km) 

Terminal 
SOC 

Vfuel of DP 
(L/100Km) 

Fuel 
economy 

0.3 × 350 3.755 0.403 3.359 89.4% 

0.4 × 350 3.704 0.466 3.428 92.5% 

0.6 × 350 3.721 0.509 3.474 93.4% 

0.9 × 350 3.758 0.531 3.503 93.2% 

1 × 350 3.795 0.541 3.506 92.4% 

3 × 350 3.925 0.590 3.563 90.8% 

6 × 350 3.942 0.603 3.585 90.9% 

10 × 350 3.958 0.611 3.602 91.0% 

4.2 The working range of engine based on expert 
knowledge 

In order to verify the value of prior knowledge, we 
conduct an experimental comparison between a DDPG 
model with/without prior knowledge. For the model 
without prior knowledge, the action variables are 
directly set as the engine speed and torque, which means 
that the agent need to explore optimal engine working 
point in the whole engine map. As shown in Fig. 4, it is 
clear that the working points of engine of our model are 
distributed in the area of low fuel consumption rate 
along the optimal BSFC curve of engine. On the contrary, 
the working points of engine without expert knowledge 
are scattered throughout the engine map. Within a 
limited number of training episodes, the algorithm with 
prior knowledge has the ability to get better fuel 
consumption than the algorithm without prior 
knowledge. 

Moreover, by introducing prior knowledge into the 
energy management strategy, the algorithm is able to 

converge faster than the one without prior knowledge. 
In Fig. 5, the algorithm combined with the optimal BSFC 
curve starts to converge from the 50th episode, but the 
algorithm without the optimal BSFC curve does not 
converge until 180 episodes. The results demonstrate 
the effectiveness and advantage of this approach. 

   
Fig. 4 The working points of engine 

   
Fig. 5 The convergence speed 

CONCLUSION 
In this paper, we investigated a DRL based EMS of 

HEVs by incorporating expert knowledge. Two kinds of 
expert knowledge are considered: BSFC curve of HEV 
engine and battery internal resistance. The experimental 
results show that the proposed method is able to 
improve the performance of EMSs. By allocating weights 
between fuel consumption and battery charge-
sustaining properly, fuel consumption is significantly 
reduced by up to 4%. Moreover, the simplified action 
space improves the convergence efficiency by 72%. In 
our future work, a universal multi-objective reward 
function will be explored, so as to adapt to different kinds 
of hybrid electric vehicles. 
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