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ABSTRACT 
In this paper, a state of charge (SOC)estimation 

method for lithium battery based on extended Kalman 
filter is proposed, and the estimation accuracy of SOC for 
lithium battery at different temperatures is analyzed. 
Firstly, a Thevenin equivalent circuit model is adapted to 
describe the battery considering model complexity, 
model accuracy and robustness of the model. Secondly, 
battery capacity and dynamic working condition 
experiment are carried out based on the battery test 
bench. Then, battery model parameters are identified by 
Forgetting Factor Recursive Least Square Algorithms 
(FFLS) based on China City Bus Cycle (CCBC) experiment 
data at different temperatures. Last but not least, a state 
of charge estimation method based on Extended Kalman 
Filter is adapted and the estimation accuracy is analyzed 
base on Urban Dynamometer Driving Schedule (UDDS). 
The results show that the estimation error is less than 4% 
in different temperatures based on the proposed 
method. 
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NONMENCLATURE 

Abbreviations  

EKF Extended Kalman Filter 
SOC State of Charge 
RLS Recursive Least Square Algorithms 

FFLS 
Forgetting Factor Recursive Least 
Square Algorithms 

CCBC China City Bus Cycle 

UDDS 
Urban Dynamometer Driving 
Schedule 

1. INTRODUCTION 
Lithium-ion batteries have been widely used in 

electric vehicles (EVs) because of their advantages of 
lightweight, fast charging, and high energy density, low 
self-discharge and long lifespan [1]. For safe operation of 
batteries and efficient energy management strategy, the 
accuracy estimation of the SOC is essential for battery 
management systems. However, it’s difficult to 
accurately estimate the SOC of batteries due to the 
changeable working environment and operating 
temperature of batteries. In this paper, the SOC of 
lithium batteries under dynamic conditions at different 
temperatures is studied. 

The SOC estimation methods can generally be 
divided into four categories: coulomb counting method 
(ampere-hour method), characteristic parameters based 
methods, data-driven methods and multi-method fusion 
based methods [2]. The SOC estimation based on 
extended Kalman filter shows a high accuracy with a fast 
convergence at erroneous initial values of SOC [3]. The 
battery models proposed mainly vary in terms of model 
structure, model complexity, required computing power 
and reliability of the obtained results [4]. In [4], Thevenin 
model is preferred for LiNMC cells by examining model 
complexity, model accuracy and robustness between 
twelve equivalent circuit models for Li-ion batteries. 

In this paper, a Thevenin model along with the EKF 
algorithms is adapted to estimate the SOC at different 
temperatures. The outline of the paper is as follows: The 
introduction is presented in Section 1. Section 2 
describes the Thevenin model, the FFLS algorithms and 
the Extended Kalman filter algorithms. Section 3 shows 
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the battery test bench and the model parameters are 
identified at different temperatures based on CCBC 
experiment data. The SOC estimation results based on 
Extended Kalman filter algorithm are verified by UDDS 
experimental data in section 4. The conclusions are given 
in section 5. 

2. METHODS 

2.1 Thevenin model 

Thevenin model (see Fig 1) consists of one RC 
networks to predict the battery response at a particular 
state of charge and open circuit voltage. Thevenin model 
is capable of forecasting the transient response of the 
battery voltage with a variation of current load, and thus 
it can be applied to different dynamic conditions. 
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Fig 1 Structure of Thevenin model 

The state space representation of Thevenin model 
can be obtained from Kirchhoff voltage laws and 
Kirchhoff's current law. The state equation and the 
observation equation are shown in the Eq. (1). 
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Where UOC is the OCV, Ut is the terminal voltage; IL is 
the load current; R0 is the equivalent ohmic resistance; 
UP is the voltage across the RC network; RP is the 
resistance in the RC network; CP is the capacitance in the 
RC network. 

The state space representation is shown in Eq. (2) by 
discretizing the Eq. (1) and adding the state variable SOC.  
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(2) 

The frequency domain of thevenin model can be 
expressed as Eq. (3). 
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Define EL=UL-UOC, the transfer function of Eq. (3) can be 
written as Eq. (4). 
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A bilinear transformation method shown in Eq. (5) is 
employed for the discretization calculation of Eq. (4) and 
the result is shown in Eq. (6). 
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Where z is the discretization operator. 
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Eq. (3) is rewritten as Eq. (7) after discretization, 
where k =1,2,3,… 
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The open-circuit voltage can be considered to be 
constant per unit sampling time. Eq. (7) is rewritten as 
Eq. (8). 
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Then Eq. (8) is rewritten as Eq. (9). 

( ) ( )ky k k 
 

(9) 

2.2 Forgetting Factor Recursive Least Square Algorithms 

The recursive least square (RLS) method is the 
recursive form of the LS method and it’s Suitable for real-
time update. In order to improve the reliability of system 
parameter identification and reduce the influence of 
historical data on the system, a forgetting factor is added 
to RLS method and Forgetting Factor Recursive Least 
Square Algorithms (FFLS) is employed to identify the 
model parameters [5]. The basic flowchart of FFLS can be 
seen from table (1) based on Eq. (9). 
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Table 1. The implementation flowchart of FFLS. 

Step1: Initialization parameters: θ̂(0) 𝑃(0) 𝜆 
Step2: Calculate Measurement Vector 
  L L L( ) 1  U (k-1)  I (k)  I (k-1)k 

 
Step3: Calculation factor 
 =λ ( -1) ( -1) ( -1)k P k k    

Step4: Calculate algorithms gain 
 1( ) ( -1) ( -1)K k P k k    

Step5: Update the parameter vector 
 ˆ ˆ ˆ( ) ( -1) ( )[ ( )- ( -1) ( -1)]k k K k y k k k      

Step6: Calculate covariance matrix 
 ( ) [ - ( ) ( -1)] ( -1)/λP k I K k k P k  

Step7: Calculate model parameters 
 

0        OC P PU R R C  

Where θ̂(𝑘)  is the estimation of the parameter 
vector, K(k) is the algorithm gain, and P(k) is the 
covariance matrix. 

2.3 Extended Kalman Filter 

Extended Kalman filter (EKF) algorithm is based on 
Taylor expansion for nonlinear systems. After the battery 
model is approximately converted to linear system, the 
SOC estimation can be carried out using standard Kalman 
filter. Considering the state space equation as shown in 
Eq. 10, the basic implementation flowchart of FFLS can 
be seen from table (2). 
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Where x(k) is the state vector at time k; y(k) is the 
measurement vector at time k; q and r are independent 
Gaussian white process noise and measurement noise 
with covariance Q and R, respectively. 

Table 2. The implementation flowchart of FFLS. 

Step1: Initialization parameters: x0,P0,Q0,R0 
Step2: Estimate the predicted state 
 ˆ ˆ( | 1) ( ) ( 1) ( ) ( )x k k A k x k B k u k     
Step3: Estimate the covariance matrix 
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Step6: Calculate covariance matrix 
 ( | ) ( ( ) ( )) ( | 1)P k k I K k C k P k k    

Where P is covariance matrix and K is Kalman gain. 

3. EXPERIMENTS 

3.1 Battery test bench 

The battery test bench (shown in Fig 1) consists of 
battery testing system (Arbin BT2000), CSZ thermal 
chamber, computer and the test battery. The battery 
testing system regulates battery charging and 
discharging with the established strategy and collects 
currents and voltages, which are then sent to the 
computer. The thermal chamber is used to control the 
environment during the test. 

The 2P5S battery pack under test in this study uses a 
LiMn2O4 Lithium-ion battery cell with a rated capacity of 

48Ah. The temperature is set as constant -5℃, 5℃ and 

25℃. 

 
Fig 1 Structure of battery test bench 

Based on the built test bench, the China City Bus 
Cycle (CCBC) and Urban Dynamometer Driving Schedule 
(UDDS) experiments at different temperatures are 
carried out.The dynamic current and the terminal 

voltage of CCBC and UDDS at 25℃ are shown in Fig. 2. 

  
(a) Current of CCBC (b) Voltage of CCBC 

  
(c) Current of UDDS (d) Voltage of UDDS 

Fig 2 Dynamic current and Terminal voltage at 25℃ 

3.2 Parameters identification results 

The battery model parameters are identified from 
CCBC test results based on FFLS method. The model 
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parameters in function with SOC at different 
temperatures are shown in Fig 3. 

  
(a) SOC-OCV (b) R0 

  
(c) Rp (d) Cp 

Fig 3 Thevenin model parameters at 25℃ 

4. RESULTS 
The initial values of EKF is setting as: x0=[1,0.04]; 

R=1; Q=diag (1,1)*1e-6; P0=diag (1,1)*1e-6. The SOC 
estimations results under UDDS are shown in Fig 4. The 
results show that the estimation error is less than 4% in 
different temperatures based on the proposed method. 

  
(a) SOC at 25℃ (b) Error at 25℃ 

 
 

(c) SOC at 5℃ (d) Error at 5℃ 

 
 

(e) SOC at -5℃ (f) Error at -5℃ 

Fig 4 SOC estimation results at different temparature 

5. CONCLUSION 
This paper adapted Thevenin model for battery 

modeling. The model parameters are identified by FFLS 
method under CCBC experiments. The SOC estimations 
results under UDDS at different temperatures by EKF is 
analyzed. The results show that the estimation error is 
less than 4% in different temperatures based on the 
proposed method. 
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