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ABSTRACT 
This paper introduces an energy management 

strategy that combines visual perception and deep 
reinforcement learning (DRL) algorithms to minimize 
fuel consumption. The proposed method is capable of 
autonomously learning the optimal control policy 
without any prediction efforts. We used a monocular 
camera in the windshield of a car to catch visual 
information as inputs. Next, we used state-of-the-art 
convolutional neural networks based object detection 
methods to detect and classify traffic light. The traffic 
light information is used as a state input for a model-
free deep reinforcement learning based energy 
management system with continuous control action. 
Hence, the traffic light information is incorporated into 
the energy management system. The experimental 
results indicate that the fuel economy of the proposed 
vision-aided strategy achieves 94.5% of dynamic 
programming-based method’s, and is 6.8% better than 
that of the original DRL algorithm without traffic light 
information under a real-world driving cycle. 
Keywords: hybrid electric vehicle, energy management 
strategy, visual perception, deep reinforcement 
learning, traffic light  

NONMENCLATURE 

Abbreviations  

EMS 
HEV 
DP 
SOC 
DRL 
CNN 
DDPG 
MDP 

Energy management strategy 
Hybrid electric vehicle 
Dynamic programming 
State of Charge 
Deep reinforcement learning 
Convolutional neural network 
Deep deterministic policy gradients 
Markov decision process 

Symbols 
𝑠𝑡, 𝑎𝑡  
T 
𝑅 

 
State, Action 
Time 
Reward 

 

1. INTRODUCTION 
Cleaner, more efficient cars can make a big 

difference to our society in terms of environmental 
benefits. Hybrid electric vehicles (HEVs) are fuel 
efficient, able to overcome range anxiety and friendly to 
the environment. Additionally, automobiles are 
beginning to be equipped with more and more on-
board sensors as vehicles become more intelligent. 
These sensors provide Internet connectivity, vehicle 
condition monitoring, higher efficiency and assistance 
for drivers to enhance both road safety and travel 
comfort. With developments of vehicle electrification 
and intelligence, it is possible to improve fuel economy 
of HEVs by using intelligent sensing and control 
algorithms.  

As one of key technologies in HEVs, energy 
management is critical to achieve higher fuel efficiency, 
which has been studied extensively. Many of the 
existing energy management strategies (EMSs) require 
predicted information prior to the trip, which is of 
utmost importance for many existing EMS in HEVs [1]. 
Another necessary requirement for an optimal EMS is 
the currently available trip information, which can be 
acquired through existing instrumentation installed on-
board. For almost a decade, various types of on-board 
perception sensors, such as radar sensors, cameras and 
ultrasonic sensors, have been widely used on 
production vehicles. Among these sensors, camera is 
the most popular sensor due to its low-cost and 
capability to capture rich visual information. 
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Meanwhile, recent developments in deep learning 
approaches have greatly advanced the visual processing 
technologies, which includes lane detection, object 
detection, drivable road segments, traffic lights 
detection and so on. 

In recent years, DRL-based architecture has been 
applied to learn the optimal control strategy based on 
the driving data [3]. He et al. [4] explored a deep Q 
learning based energy management strategy, and 
demonstrated that the fuel economy of the DRL-based 
strategy is close to the global optimum. However, these 
DRL-based approaches tend to assume that the trip 
information or the environment is merely related to the 
current speed and acceleration. The variations in trip 
characteristics and prevailing traffic conditions are 
always ignored. However, the trip information is not 
only dependent on current vehicle states, but also 
related to various factors such as driving styles, route 
choices and traffic environments. A recent study [5] 
suggested that the incorporation of traffic information 
is able to improve the performance of HEVs energy 
management systems.  

In this paper, the traffic information collected from 
on-board visual perception sensors are incorporated 
into the energy management system. We developed a 
novel energy management system that combined 
optimizing perception and decision-making algorithms. 
The image information collected from the camera and 
vehicle states collected from on-board sensors are used 
as inputs for the EMS. The EMS contains a CNN based 
image processing module to collect visual information 
and a DRL based control model to split power. We 
evaluate the performance of the proposed system on a 
Toyota Prius II HEV. In order to make the proposed 
methodology more understandable, a simple schematic 
overview of our work is provided in Fig 1.  
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Fig 1 The interaction between the DRL algorithm and 
environment. 

2. DEEP REINFORCEMENT LEARNING FOR ENERGY 
MANAGEMENT 

2.1 Deep Reinforcement Learning 

In this paper, the energy management of a HEV is 
formulated as an Markov decision process (MDP) 
problem. The solution of an MDP problem is a policy π 
which is a distribution of actions given states that 
maximizes the expected discounted sum of the rewards. 
The action value function, denoted as 𝑄𝜋 (𝑠, 𝑎) , is 
defined as the expected sum of future rewards for 
selecting action 𝑎 in state 𝑠 and following policy. The 
action function can be expressed by the Bellman 
Equation as follows: 

𝑄π(𝑠, 𝑎) = 𝔼[𝑅𝑡+1 + 𝛾𝑄𝜋(𝑠𝑡+1, 𝑎𝑡+1)|𝑠𝑡, 𝑎𝑡]       (1)                 
where 𝑠𝑡+1 , 𝑎𝑡+1 and 𝑅𝑡+1are the state, action and 
reward of next time step, and 𝛾 ∈ [0,1] is the discount 
factor. At each time step t, the agent receives some 
representation of the environment’s state  𝑠𝑡 , and 
selects an action 𝑎𝑡 according to the state signal and 
policy π. In this paper, we selected a simple continuous 
action domain model-free reinforcement learning 
algorithm: deep deterministic policy gradients (DDPG) 
[6], to show that it is capable of solving the MDP. 

2.2 DDPG-based Strategy 

The MDP problem for HEV energy management is 
resolved by DDPG. The exact definition of the state 
space S, action space A and reward function R are 
defined as following. 

State space: the state space is the definition of the 
observations that the algorithm receives at each time 
step. In this paper, we use the image of the current 
observation, together with the observed vehicle speed, 
SOC and acceleration are as state variables. 

Action space: we use output power of engine as 
action variable. To simplify the model of power-split 
HEV in DDPG and reduce the amount of action 
variables, we set that engine works in a specified area.  

Reward function: in order to guarantee the regular 
iteration of the network, the deep reinforcement 
learning single-step reward function R needs to be 
defined, reward function is one of the key factors in 
determining the performance of the DDPG. 
Traditionally, reward function is defined as the energy 
cost at each step: 

        𝑅1(𝑠, 𝑎) = ∫ 𝑐𝑜𝑠𝑡
𝑇

0
𝑑𝑡                 (2) 

where cost represents the engine fuel consumption, 
𝑡 ∈ [0, 𝑇] is the specific time horizon. We want SOC to 
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keep in a range and to make the performance of SOC 
stable. The reward function of our work is defined as: 

   𝑅2(𝑠, 𝑎) = ∫ [cost +
𝑇

0
𝛽(SOC(𝑡) − SOC𝑟)2]𝑑𝑡   (3) 

where 𝛽 is a positive weighting factor and SOC𝑟 is a 
preassigned constant to maintain charge-sustaining 
constraints. Therefore, both low fuel consumption and 
SOC stability are expected to be achieved by defining 
the reward function. 

   𝑅(𝑠, 𝑎) = 𝑅1(𝑠, 𝑎) + 𝑅2(𝑠, 𝑎)            (4) 

3. VISION-AIDED ENERGY MANAGEMENT STRATEGY 

3.1 Data Collection 

For getting a more practical evaluating evaluation of 
the proposed DRL model, we conducted our 
experiments in a real-world environment from Chinese 
roads instead of a standard driving cycle. Data are 
collected from endemic dataset archived from roads in 
Guiyang downtown. The data are collected from 
Changling South Road to Chinese Academy of Sciences 
Guizhou Technology Innovation Park and the route is 
given in Fig 2. The collected data include speed and 
image collected from the camera. Fig 3 shows the on-
board computer vision system. We used a monocular 
camera in the windshield of the car to collect visual 
inputs, and the vehicle speed is recorded via the CAN 
bus. The collected images are downsampled into 80 × 
160 pixel and 1Hz.  

 
Fig 2 Example trip from Google Map. 
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 Fig 3 The structure of the real equipment. 

3.2 Image Processing 

The raw image could be fed directly into the DRL 
agent without any mediated perception. But it is very 
inefficient for training neural network models. Driving 
cycle is constrained by the traffic. The image covers rich 
traffic information, we focus on a special case: the 
detection and classification of traffic signals on urban 
driving cycle. Because traffic signals provide important 
information for driving, and a wide variety of CNN-
based approaches have been developed to detect and 
recognize traffic lights. In this paper we apply the state-
of-the-art, real-time object detection system You Only 
Look Once (YOLO) [6], for traffic light detection and 
classification. Detection results from the YOLO V3 
detector are shown in Fig 4. 

traffic light：0.90

 
Fig 4 Results from the YOLO V3 model 

4. EXPERIMENTS 

4.1 Experiment Setup 

We build Deep Reinforcement Learning model by 
TensorFlow, which is an open source deep learning 
platform. Meanwhile, A GeForce GTX 2080Ti GPUs are 
used to assist accelerating training phase, and the hyper 
parameters of the DDPG agent are listed in Table 1. 

Table 1. DRL-based algorithm hyper parameters. 

Hyper Parameters Value 

Learning rate for Actor 0.001 

Learning rate for Critic 0.001 

Gamma discount 0.99 

Batch size 64 

Replay memory size 10000 

Initial exploration 1.5 

4.2 Results 

The collected velocity trajectory is showed in Fig 5. 
We use CNN based image processing technique to 
classify the state of the traffic lights. If the lights are 
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green, it outputs signal 1; If the lights are red, it outputs 
signal 2. Fig 6 provides the state of the traffic lights.  
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    Fig 5 Synthesized velocity profile of the example trip. 
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Fig 6 The states of the traffic lights in the example trip. 

DP based HEV power Management is used as the 
benchmark to validate the effectiveness of the vision-
aided DDPG method. In order to ensure the fairness of 
the comparison, a same hyper parameter setting is 
applied in all the three methods and the initial SOC is 
set to 0.62. The SOC curves corresponding to different 
control policies are shown in Fig 7.  
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Fig 7. SOC curves for different control policies in the trip. 

    The fuel consumption of DP, DDPG and 
DDPG+Vision can be seen in Table 2. The Vision-aided 
DDPG strategy can achieve 94.5% fuel optimality of the 
DP benchmark in real driving cycle and is 6.8% better 
than original DDPG regarding the fuel optimality. The 
improvement is achieved by the incorporation of more 
environment information. 

Table 2. Fuel economy comparison under the trip. 

Control 
strategies 

Fuel 
consumption(L) 

Final 
SOC 

Relative ratio 
to DP (%) 

DP 0.328 0.60 100 
DDPG 0.374 0.59 87.7 

DDPG + Vision 0.347 0.59 94.5 

5. CONCLUSION 
In this paper, a system that combines visual 

perception and deep reinforcement learning algorithms 
is performed in order to minimize fuel consumption of a 
HEV. The results show that traffic lights information 
collected from on-board camera can improve the fuel 
economy of HEV. This is because the image provides 
important traffic information. In this paper, we only 
considered the traffic light information collected from 
image data. A future direction is to exploit more 
information from visual inputs to improve EMS. 
Additionally, the research on application of other 
sensors such as radar, lidar, ultrasonic and Global 
Positioning System (GPS) for EMS will be a valuable 
future work. 
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