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ABSTRACT 

 Hydrogen-based energy systems are a viable 
solution to perform long-term storage of excess 
intermittent renewable energy. However, such systems 
are rarely considered in energy system optimization. 
Moreover, whenever these technologies are considered, 
the model parameters are considered known and fixed, 
which can result in suboptimal designs, sensitive to 
uncertainty. To evaluate the inclusion of a hydrogen-
based system in a global energy system and to address 
the uncertainty on its techno-economic performance, we 
performed an optimization under uncertainty of a solar-
powered, grid-connected household, supported by 
batteries and hydrogen storage. This paper illustrates the 
effect of the hydrogen-based energy system on the 
uncertainty of the predicted levelized cost of electricity. 
The inclusion of the hydrogen system decreases the 
standard deviation of the levelized cost of electricity by 
4.3 €/MWh (13%) at the expense of an increase in mean 
levelized cost of electricity by 100 €/MWh (28%). 
Consequently, despite the gain in robustness, including a   
hydrogen-based storage system in the considered urban 
area is not beneficial overall. Future works will focus on 
including remote areas, to fully exploit the gain in 
robustness induced by hydrogen-based storage systems.     
 
Keywords: hydrogen-based energy system, levelized 
cost of electricity, uncertainty, robust design 
optimization.  

1. INTRODUCTION 
To match intermittent renewable energy supply with 

energy demand, renewable energy systems (e.g. 
PhotoVoltaic (PV) system and wind turbines) are coupled 
with energy storage technologies (e.g. battery, hydrogen 
storage). In such a Hybrid Renewable Energy System 
(HRES) configuration, a battery system is suitable to 
cover short-term energy storage (<week), while 
hydrogen-based energy storage covers longer periods 
(>months) [1]. Despite the advantage of including a 
hydrogen-based energy system in an HRES, these 
technologies are rarely considered in techno-economic 
design optimization of global energy systems [2]. In such 
design optimization studies of HRES, technical and 
economic parameter values are assumed deterministic 
(i.e. known and fixed). However, during the planning, 
construction and operation stage of the system, such 
parameters are subject to real-world uncertainties [3]. 
To address the effect of these uncertainties on the 
system performance, Robust Design Optimization (RDO) 
considers uncertainties on these system parameters and 
provides robust designs that are least sensitive to these 
inherent parameter variations [4-6]. Despite the clear 
importance of considering uncertainties in design 
optimization, its application to accurate renewable 
energy system models is minimal, as the stochastic 
evaluation of such complex models becomes 
computationally intractable when more than a handful 
of uncertain parameters are considered (>10 
parameters) [7].  
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To characterize the effect of a hydrogen-based 
energy system on the Levelized Cost Of Electricity (LCOE) 
of an urban, grid-connected household, we developed a 
non-linear, techno-economic system model of a 
hydrogen-based HRES. Moreover, we considered the 
uncertainty on 43 technical and economic model 
parameters to characterize the impact of the inherent 
variability of these parameters during real-life operation, 
and we performed a computationally efficient RDO to 
provide a robust design that is least-sensitive to this 
uncertainty. Finally, we compared this robust design with 
the deterministic design and with designs from the 
literature. In section 2, the system and stochastic 
optimization algorithm is described, followed by the 
results in section 3 and the conclusion in section 4.      

2. METHOD 
In this section, we describe the HRES and the 

adopted models, followed by the location-specific data 
considered and the design optimization algorithms 
applied.  

2.1 System description and modelling 

In this work, we considered a grid-connected 
household with a PV array to provide electricity from 
solar energy. To store an excess of solar energy, a hybrid 
storage system is implemented, consisting of Li-ion 
batteries and pressurized (30 bar [8]) Proton Exchange 
Membrane (PEM) electrolyzers with hydrogen storage 
tank. To recover the electricity stored in the form of 
hydrogen, a PEM fuel cell array is connected to the 
hydrogen storage tank. To ensure an optimal 
cooperation between the different energy suppliers (i.e. 
grid, PV array and PEM fuel cell array) and storage 
systems (batteries and PEM electrolyzer with hydrogen 

storage tank), the following energy management 
strategy is applied [9]: The electricity produced by the PV 
array is directly used to cover the energy demand. When 
the PV does not meet the demand at a specific time, the 
energy available in the batteries is consumed, followed 
by the hydrogen power system and finally the grid. When 
the PV array produces power above the household 
demand, the batteries are first charged, followed by 
hydrogen production in the PEM electrolyzer array. In 
this work, no grid injection is considered.   

We modelled each component individually and 
combined these models in a general system model 
developed in Python. The PV model is adopted from the 
PVLib Python library [10], where we selected the 80 Wp 
Canadian Solar CS5C-80M module. We considered the 
PEM electrolyzer and fuel cell models developed in [11], 
while the hydrogen tank model and the battery model 
was adopted from [12]. To determine the techno-
economic performance of the system in an urban area, 
we considered Brussels (Belgium) as location. We 
adopted the hourly solar irradiance and ambient 
temperature data from [13], which are based on a Typical 
Meteorological Year. On the demand side, we 
considered the load profile provided by [14]. Based on 
the method presented by Montero et al [15], the data 
was adjusted to construct a location-specific load profile. 
We adopted the grid price from predictions of the 
Belgian transmission system operator Elia [16].     

2.2 Design optimization 

To determine the location-specific optimal designs, 
we considered 5 design parameters: the number of PV 
panels, PEM electrolyzers, PEM fuel cells, the battery size 
and hydrogen tank volume. The techno-economic 
performance of the system designs is characterized by 
the LCOE.  

In total, 43 input parameters are considered 
uncertain (see Appendix for complete list). The 
uncertainty on the economic parameters is based on 
uncertainty in future technology evolution and bulk 
manufacturing size of the components. The list of 
uncertain parameters includes the grid price and, for 
each component (i.e. PV panels, PEM electrolyzer, 
hydrogen storage tank, PEM fuel cell, battery, DC-DC 
converter, DC-AC inverter), the specific capital 
expenditure, specific operational expenditure, specific 
replacement cost and lifetime. To represent the 
technical uncertainties of the system, the membrane 
area, membrane thickness, pressure and temperature in 
the PEM electrolyzer and fuel cell are considered 
uncertain, as well as the inverter, converter and battery 

 

Fig 1 The grid-connected household is supported by a 
photovoltaic array to cover the electricity demand. To store 
the excess electricity, a battery array and hydrogen-based 
energy system, consisting of electrolyzer, storage tank and 

fuel cell, are considered. 
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efficiency, self-discharge rate of the battery and the 
power production of the PV panels. For each of these 
parameters, we considered a Gaussian probability 
density function.  

To propagate the uncertainties through the system 
and quantify the statistical moments (i.e. mean and 
standard deviation) of the LCOE, we applied a robust and 
computationally efficient sparse Polynomial Chaos 
Expansion (PCE) technique [7]. By combining the sparse 
PCE with a genetic algorithm, the mean and standard 
deviation are evaluated for each design sample by PCE 
and these objectives are consequently optimized via the 
genetic algorithm [4]. By reducing the standard deviation 
of the LCOE, the probability of the mean representing the 
real-life performance increases. Therefore, a robust 
design that achieves the minimum standard deviation for 
the objective, ensures the highest probability of 
performing near the mean. Consequently, a design that 
significantly reduces the standard deviation, at the 
expense of a marginal worsening of the mean, is more 
beneficial overall than the optimal mean design.      

3. RESULTS AND DISCUSSION   
When uncertainties are considered and the RDO 

algorithm is applied to the system, the configuration 
achieving the minimum mean LCOE reaches a value 
below the expected mean grid cost (360 €/MWh as 
opposed to the projected mean grid price of 370 €/MWh) 
(Fig 2). This HRES configuration should consist of 12 PV 
panels and a 0.24 kWh battery system and covers 29% of 
the total annual electricity demand of the household (the 
grid covers the remaining 71%). An intermediate 

                                                           
1 To fully cover the electricity demand with the HRES (i.e. autonomous 

system), the HRES should consist of 1242 PV panels, 101 electrolyzers and 90 

configuration reduces the standard deviation by 
2.2 €/MWh at the expense of increasing the mean by 
9 €/MWh. This configuration consists of 22 PV panels, a 
0.24 kWh battery system and no hydrogen-based energy 
system components. The robust HRES design however, 
consists of 33 PV panels, 7 electrolyzers, 16 fuel cells and 
a 0.1 m3 (8.5 kWh) hydrogen tank. By introducing the 
hydrogen-based energy system, the coverage of the total 
annual electricity demand is increased up to 45% 
absolute and the standard deviation of the LCOE is 
reduced by 4.3 €/MWh, at the expense of an increase in 
mean LCOE by 100 €/MWh compared to the optimal 
mean design. Consequently, including a hydrogen-based 
energy system increases the grid independence from the 
grid and improves the LCOE robustness. However, the 
increase in mean LCOE is large compared to the gain in 
robustness. Therefore, despite the gain in robustness, 
including a hydrogen-based energy system in the 
considered urban area is not considered beneficial 
overall.  

When further decreasing the grid dependency, the 
mean LCOE increases exponentially (Fig 3). To achieve a 
further reduction of the grid dependency, the HRES 
capacity should increase, resulting in a rapid increase in 
investment and replacement costs of the PV array, 
battery system and hydrogen-based energy system 1 . 
Consequently, the standard deviation of the LCOE 
increases proportionally with the HRES capacity 
installed. Therefore, since the uncertainty on the future 
electricity price from the grid is moderate in the 
considered urbanized location, the standard deviation 
does not further decrease when further increasing the 

fuel cells, supported by a pressurized hydrogen tank of 0.77 m3 (66.2 kWh) and 
a 7.77 kWh battery system. 

 

Fig 2 A trade-off exists between minimizing the mean 
levelized cost of electricity and minimizing its standard 

deviation. The decrease in standard deviation (4.3 €/MWh) 
is however small compared to the total increase in mean 

levelized cost of electricity (100 €/MWh).    

standard

devia on

levelized cost

of electricity

 MWh/€ 

 MWh/€ mean levelized cost of electricity  

Fig 3 The levelized cost is optimal when 71% of the total 
annual electricity demand is covered by the grid. When 

decrease the grid dependency, the levelized cost 
increases exponentially.  

levelized cost

of electricity

 MWh/€ 

   grid dependency 
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share of electricity demand covered by the HRES above 
45%. 

4. CONCLUSION   
The introduction of hydrogen-based energy systems 

in a global energy system is a viable solution to comply 
with long-term (i.e. months) energy storage. For grid-
connected households, an inclusion of such a system 
affects the levelized cost of electricity. The robust design 
for such a system, consisting of 33 PV panels, 7 
electrolyzers, 16 fuel cells, a 0.1 m3 (8.5 kWh) hydrogen 
tank and 0.24 kWh battery system, decreases the 
standard deviation of the levelized cost of electricity by 
4.3 €/MWh, at the expense of a 100 €/MWh increase in 
its mean. Therefore, the inclusion of a hydrogen-based 
energy system improves the techno-economic 
performance robustness, even in an urban location with 
only a moderate uncertainty on the grid price. However, 
despite the gain in robustness, including a hydrogen-
based energy system in the considered urban area is not 
beneficial overall. During future works, we will compare 
different locations, including locations with larger 
uncertainties on future grid price (i.e. remote locations), 
to fully exploit the advantage of increasing the 
robustness with hydrogen-based storage.      
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APPENDIX 
Table A Model parameter ranges 

Parameter range 

Solar irradiance ± 3.8% [17] 
Ambient temperature ± 1 K [18] 
Load ± 20% [19] 
Grid price 370 ± 141 €/MWh [16] 
CAPEXPV 780 ± 520 €/kWp [20] 
OPEXPV 17.5 ± 1.5 €/kWp [20] 
lifetimePV 22.5 ± 2.5 year [21] 
Power outputPV ± 5 W [22] 
CAPEXelectrolyzer 1750 ± 350 €/kW [23] 
OPEXelectrolyzer 4 ± 1% [23] 
Lifetimeelectrolyzer 80000 ± 20000 h [23] 
Replacement costelectrolyzer 0.275 ± 0.025% [23] 
Membrane areaelectrolyzer 50 ± 1 cm2 [11] 
Membrane 
thicknesselectrolyzer 

50 ± 1 µm [11] 

Temperatureelectrolyzer 353 ± 1 K [11] 
Pressureelectrolyzer 30 ± 0.1 bar [11] 
CAPEXtank 522.5 ± 102.5 €/kg [24,25] 
OPEXtank 1 ± 1% [25,26] 
Lifetimetank 22.5 ± 2.5 year [26] 
CAPEXfuel cell 2765 ± 495 €/kW [27]  
OPEXfuel cell 95 ± 15 €/kW [27] 
Replacement costfuel cell 730 ± 70 €/kW [27] 
Lifetimefuel cell 25000 ± 5000 h [26] 
Membrane areafuel cell 50 ± 1 cm2 [11] 
Membrane thicknessfuel cell 178 ± 1 µm [11] 
Temperaturefuel cell 353 ± 1 K [11] 
Pressurefuel cell 1.2 ± 0.1 bar [11] 
CAPEXbat 844 ± 342 €/kWh [28] 
OPEXbat 8.05 ± 3.15 €/kWh [29]  
Lifetimebat 10250 ± 5500 cycles [28]  
Replacement costbat 394.5 ± 110.5 €/kWh [29] 
Efficiencybat 90 ± 5% [28,29] 
Self discharge ratebat 0.2 ± 0.1 %/day [29]  
CAPEXDC-DC 245 ± 35 €/kW [30] 
OPEXDC-DC 1 ± 1% [31,32] 
lifetimeDC-DC 17.5 ± 7.5 year [33]  
efficiencyDC-DC 90 ± 1% [31,32] 
CAPEXDC-AC 461 ± 187 €/kW [33] 
OPEXDC-AC 3 ± 2% [28,29] 
Replacement costDC-AC 257 ± 174 year [28,29] 
lifetimeDC-AC 17.5 ± 7.5 year [33] 
efficiencyDC-AC 95.25 ± 1.25% [33]  
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