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Abstract 

In order to satisfy high torque output and high 
speed driving demand, electric vehicles need a 
gearbox to adjust the gear ratio. The shift schedule is 
popular in gear shift research. The most widely used 
schedule, the two-parameter shift schedule, ignores 
the influence of dynamic conditions, resulting in that it 
is hard to suit the road and it causes energy waste. In 
this paper, a strategy based on model predictive 
control is proposed. A Recurrent neural network is 
used to predict velocity sequences in the 5-second 
horizon. Dynamic programming is adopted to 
construct a benchmark strategy and also to act as the 
rolling optimization part of the MPC shift schedule. 
Simulation results show that this shift strategy can 
reduce the shift frequency while saving energy 
consumption. 
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NOMENCLATURE 

Abbreviations  

RNN recurrent neural network 
DP dynamic programming 

MPC model predictive control 
MAE mean absolute error 
MSE mean squared error 

Symbols  

𝑇𝑡𝑞 required torque 
𝑖𝑔 transmission gear ratio 

𝑖0 final drive ratio 
𝜂𝑡 mechanical efficiency 
r wheel radius 

1. Introduction 

Electric vehicles have become the mainstream of 
development due to energy and environmental crisis. 
To consider the high torque demand during 
acceleration and climbing, and high-speed demand of 
the vehicle and to improve the efficiency of the motor, 
the electric vehicle still needs a Multi-speed gearbox 
to change the transmission ratio. 

Shift schedule [1] is one of the research focuses on 
the transmission. How to formulate a reasonable shift 
schedule based on the driver's intention, road 
environment, and vehicle driving conditions and at the 
same time effectively solve the problems of frequent 
shifting and shift failure in special conditions is 
significant to improve the dynamic and economic 
performance of the whole vehicle. 

The traditional shift schedule is based on rules and 
is inferred by multiple parameters including vehicle 
velocity, throttle opening, and acceleration [2]. The 
rule-based shift schedule can guarantee the optimal 
dynamic and economic performance in specific driving 
conditions, but fail to meet the driver’s intention when 
driving conditions are complicated. Furthermore, the 
traditional shift schedule only calculates local optimal 
solutions and ignores the influence of the potential 
vehicle velocity changes. In this paper, we propose an 
intelligent shift strategy based on model predictive 
control (MPC). A Recurrent neural network (RNN) is 
used to predict velocity and dynamic programming 
(DP) is used to compute the optimal shift sequence in 
the predictive time domain. The vehicle model has 
been established on the Matlab/Simulink platform. 
The optimal shift strategy has been validated by the 
Chinese World Transient Vehicle Cycle (C-WTVC). 
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2. Shift Schedule Based On MPC 

2.1 Velocity forecast based on RNN  

The Recurrent neural network (RNN) [3] is a 
network structure to process data with sequence 
correlation. Compared with the traditional neural 
network structure, the recurrent neural network 
increases the connection between the hidden layers, 
so that the hidden layer features are not only related 
to the current moment. As a result, it saves the 
"memory" for the previous input, thus enhancing the 
process of the timing data. The RNN calculation's 
process is as shown in Equation 2.1. 

ℎ𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑥𝑡𝑈 + ℎ𝑡−1𝑊 + 𝑏) (1) 

In this paper, a recurrent neural network (RNN) is 
adopted to predict vehicle velocity. We use the vehicle 
velocity of the past ten seconds to be the input of the 
RNN, and the output is the velocity of the next five 
seconds. The training set is composed of multiple 
working conditions and the testing set is the Chinese 
World Transient Vehicle Cycle (C-WTVC). The cell size 
of the RNN is 20 and the activation is sigmoid. In order 
to contrast the results of the model, a deep neural 
network (DNN) model is built with five layers and 20 
cells per layer. 

The result of the RNN and DNN model is shown in 
TABLE I. The mean absolute error (MAE) and mean 
squared error (MSE) has been calculated. We also 
compared the simulation time of calculating the two 
models. 

 

TABLEⅠ VOLOCITY FORECAST RESULT 

Network Type MAE MSE times 

RNN 2.929219 14.504694 2.989s 
DNN 3.168024 19.890326 2. 852s 

 
The MAE of the RNN model has been reduced by 

8.54% and the MSE has been reduced by 28.08%. 
Meanwhile, the time consumption is in the same 
magnitude. The result indicates that the RNN model 
forecasts vehicle velocity better. 

 

2.2  Model predictive control  

Model predictive control (MPC) is one of the 
advanced control theories and mainly consists of three 
steps, including building a prediction model, applying 
an optimization algorithm and correcting feedbacks. In 

the current state, rolling optimization can be achieved 
by three steps, first forecasting related states in a 
definite time zone, second searching for optimum 
control sequences, last using only the control variables 
in the first point then moving to the next point. And 
repeat these procedures. 

When MPC [4] is used to construct the shift 

strategy， the processes are as follows: 
(1) Predict and rationalize velocity sequence in a 

certain horizon with some prediction methods like 
RNN; 

(2) With the predicted results as inputs, DP 
(dynamic programming) is adopted in the optimization 
part to search for optimal control traces; 

(3) Implement the first value of every control 
variable sequence to the transmission; 

(4) After the transmission responses, the real or 
virtual driver changes the velocity requirement in the 
next moment according to current velocity by 
manipulating pedals. The current velocity will be 
delivered to the prediction part to be the start point; 

(5) Repeat steps (1) to (4). 
 

2.3 Shift schedule based on MPC 

A pure electric truck with 2-gear AMT is used in 
this paper, and the parameters of the vehicle are listed 

in Table Ⅱ. 
 

TABLE Ⅱ VEHICLE PARAMETERS 

Vehicle parameters Value 

Total weight [kg] 15000 
Wheel radius [m] 0.506 
Frontal area [m2] 8 

Driveline efficiency 0.95 
Rolling resistance coefficient 0.008 

Air resistance coefficient 0.55 
Final drive ratio 9.76 
First gear ratio 2.5 

Second gear ratio 1 

 
The driving equation of vehicle is: 

𝑇𝑡𝑞𝑖𝑔𝑖0𝜂𝑡

𝑟
= 𝑚𝑔𝑓 + 𝑚𝑔𝑠𝑖𝑛𝛼 +

𝐶𝐷𝐴𝑢𝑎
2

21.15
+ 𝛿𝑚

𝑑𝑢

𝑑𝑡
 (2) 

In the DP model [5], the control variables are 
upshifts and downshifts and the state variables are 
current gear and SOC. The optimized objective 
function is: 
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Cost = min
𝑢𝑘𝜖𝑈𝑘

(∑ ∆𝑝

𝑛−1

𝑘=0

(𝑥1, 𝑥2, 𝑢𝑘) + ∑ 𝑔

𝑛−1

𝑘=0

(𝑢𝑘)) (3) 

In the formula above,  ∆𝑝(𝑥1, 𝑥2, 𝑢𝑘)  is the 
energy consumption and 𝑔(𝑢𝑘) is the shift penalty. 

The required torque and rotating speed of the 
motor vary according to the transmission ratio. 

According to the above formulas, the transmission 
gear can be selected based on the MPC model which is 
mentioned in the previous section. 

 

2.4 Simulation results and discussion 

In this paper, we use C-WTVC to test the effect of 
the predictive shift schedule. The length of the unit 
driving cycle is 1800 seconds and the highest velocity 
is around 87.8 km/h. The initial SOC is 0.85. In order to 
compare the simulation results, we also simulated a 
rule-based (RB) shift schedule. This shift schedule is a 
kind of two-parameter economic schedule, which is 
widely used in the vehicles and can achieve good 
economic performance. DP, MPC and RB shift 
strategies are simulated with the C-WTVC.  

 

 

Fig.1 SOC traces of RB, DP, and MPC strategies 

 

Fig.1 shows the SOC traces in the results of RB, DP, 
and MPC strategies. The SOC declines in the same 
trend and the final SOC is close. The SOC DP is higher 
than SOC MPC and the SOC RB is the lowest, which 
means its energy consumption is the highest. 

 

TABLE  Ⅲ RESULT OF SHIFT SCHEDULE 

Shift 
Schedule 

SOC 

Power 
Consumption 

（KWh/100km） 

Shift 
Frequency 

MPC 0.4744 76.22 23 
RB 0.4660 77.93 32 
DP 0.4761 75.88 24 

 

Table Ⅲ  shows the detailed data of the 
simulation results. The power consumption of the 
MPC, RB and DP shift strategy is 76.22, 77.93 and 
75.88 respectively. Shift strategy based on rules 
consumes around 2.6 percent more than that based 
on DP. The result indicates that the MPC shift schedule 
requires 2.2 percent less energy, which is 
1.71KWh/100km, than rule-based shift schedule. DP is 
a global optimum method, so its SOC is the highest. In 
order to avoid unnecessary and repeated gearshifts, 
the RB shift schedule includes upshift schedule and 
downshift schedule. There is a buffer between upshift 
and downshift, so it doesn’t have the best economic 
performance. The MPC shift strategy doesn’t need 
that buffer, and as a result, it is more efficient than the 
RB schedule. 

At the same time, the MPC shift strategy shifts 23 
times during the whole driving cycle while the shift 
frequency of RB is 32. The traditional shift schedule 
does not consider the impact of future driving 
conditions on the current shift decision. When the 
velocity of the vehicle is near the shift point, the RB 
schedule may shift frequently for the economic effect 
of the current moment, thus sacrificing comfort. The 
MPC shift strategy takes the changing trend of the 
future velocity into account, so it can effectively 
prevent frequent shifts and achieve better economic 
performance. 

Fig.2 and Fig.3 are the results of the gear position 
and vehicle velocity under the C_WTVC of RB and MPC 
shift strategy, respectively. We can clearly observe 
that the shift of the RB shift schedule is more frequent 
than the MPC strategy. 
 

 

Fig.2 rule-based velocity and shift schedule 
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Fig.3 velocity and shift schedule based on MPC 

 

On the one hand, when the vehicle is driving at 
low speed, according to the predicted results of RNN, 
if the velocity is only a short amount higher than the 
shift point, the vehicle is less likely to enter the higher 
gear. On the other hand, if RNN predicts that the 
velocity will only be briefly below the shift point and 
the current gear meets the power demand of the 
vehicle, the vehicle will not be downshifted. In this 
way, the MPC shift strategy greatly reduces the 
frequency of shift under complicated conditions while 
ensuring economic performance. As a result, this 
strategy improves ride comfort and reduces the 
abrasion of the shifting mechanism and saves energy 
consumption of the shifting process. 

 

2.5 Conclusions 

In this paper, we have established an RNN for 
vehicle velocity forecasts. The MAE and MSE have 
been reduced by 8.54% and 28.08% compared with 
DNN. In the framework of MPC, we use the current 
velocity and the predicted velocity of the RNN as 
short-term conditions and use the DP algorithm to 
optimize the gear position. The energy consumption is 
reduced by 2.2 percent and the shift frequency 
declines significantly. The results show that the MPC 
strategy can choose optimal shift gear for pure electric 
vehicles, which improves the economic performance 
and ride comfort evidently. 
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