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ABSTRACT

Energy management strategy is important for improving
fuel economic of hybrid electric vehicles. We present a
deep neuroevolution based energy management
strategy for hybrid electric vehicles, which learns
optimal energy split strategies through evolution of its
deep neural networks structure. We define the
optimization objective of the deep neural networks by
the fuel consumption and properties of target HEV. The
deep neural networks controller is learnt through a
parallel and evolution way. The simulation results on a
standard driving cycles show that the proposed deep
neuroevolution method outperforms the DRL based
model, and achieves comparative performance to
global-optimal method-dynamic programming.

Keywords: deep neuroevolution, plug-in hybrid electric
vehicle, energy management strategies

SoC; State of Charge
Peng Power of the engine
0 Neural networks parameters
F Final return
Rr Reshaped return
Noise standard deviation
€ Evolve parameters

NONMENCLATURE

Abbreviations

EMS Energy management strategy
HEV Hybrid Electric Vehicle

DP Dynamic Programming

MPC Model Predictive Control

DRL Deep Reinforcement Learning
DN Deep Neuroevolution

DQN Deep Q Networks

Symbols

St Vehicle State

12 Vehicle Velocity

acc Vehicle Acceleration

1. INTRODUCTION

The decline of global oil inventories, as well as the
serious concern on air quality has caused several
challenges for vehicular industry. These challenges have
encouraged the development of hybrid electric vehicles
(HEVs), which have been considered as the most
feasible and immediate choice by automakers. HEVs
structure includes two or more energy sources with
their associated energy converters. With multiple
power sources, HEVs have greater flexibility to supply
power to ensure the power request at the wheels, and
are able to decrease the usage of internal combustion
engine, thus resulting in Improved fuel economy [1,2].

Crucial to achieving the improved fuel economy is
an efficient energy management strategy (EMS) for
HEVs. In past, a plethora of EMSs have been proposed.
The energy management of HEVs is depicted as an
online energy source distribution problem. The solution
for the problem can be roughly divided into three
categories:  rule-based, optimization-based and
learning-based.

The rule-based approach can be easily developed
and operated in practice. However, its robustness and
generality cannot be guaranteed. Compared with
optimization-based approach, rule-based HEV control
methods produce inferior fuel economy. However, the
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optimization-based approach also encountered several
challenges. The global optimization tools like dynamic
programming (DP) require the future driving cycle
information, which is not available in practice. As a
result, model predictive control (MPC), which calculates
the optimal control for the predicted future driving
cycle, has become a popular approach. However, the
performance of MPC is heavily dependent on the
accuracy of driving cycle prediction algorithms.
Nevertheless the accurate driving cycle prediction is not
an easy task [3].

In recent years, the learning-based approaches have
attracted significant attentions as a possible solutions to
address the limitations associated with rule and
optimization-based approaches. One of the most
successful types of learning-based approaches in use is
deep reinforcement learning (DRL). Much of the power
of DRL comes from its ability to learn optimal control
strategies by using deep neural networks [4]. The DRL
agent takes actions under numerous environmental
states to achieve the highest long-term accumulation of
rewards. Successes of this approach in HEVs include
energy management agents for a power-split HEV with
two planetary gears [5], and series-parallel HEVs [2, 6].

An alternative learning-approach of DRL to solving
control problems is using deep neuroevolution (DN)
algorithm. It has been shown that DN methods can
reliably train neural network policies to many control
problems [7]. In this paper, we study the application of
DN in EMSs of a series plug-in HEV. We found that DN
achieves stronger results than DRL based methods for
PHEV. Moreover, it is faster than DRL based model
because it is highly parallelizable.

2. HEV POWERTRAIN MODELING AND EMS BASED
ON NE

2.1 HEV powertrain model

The powertrain of the series HEV are shown in Fig 1,
within which there are two power sources: the battery
pack with capacity of 25Ah and the engine-generator
set (EGS). The HEV s impelled by two identical electric
propulsion systems: one for the front axle and the other
for the rear axle. The curb weight of the HEV is 3500kg.
The peak power of the engine is 95kW (3600r/min) and
306Nm (1800r/min) for its peak torque. The Generator
outputs rated power (41kW) at rotation speed
2400r/min and peak power (93kW) at 4000r/min.

We use the backward approach to simulate the
powertrain. The desired speed and acceleration are
used as direct inputs to calculate the required power of

axis. The powertrain can only work under series mode,
which means that the axis power are provided by the
motors and the engine and generator can be only used
to recharge the battery. The torque balance equation
and the rotational speed equation of the powertrain are
given by

Teng = Tgen: Tnot = Taxie

VVeng = VVgen:Wmot = Waxie- (1)
Teng, Tgen and Tgye are torques of the engine,
generator and axle respectively. Wey,,;, Wyen and
Waxie are rotational speed of the engine, generator
and axle respectively. Regenerative braking is allowed
when the HEV is slowdown. When the PHEB is
performing regenerative braking, the engine is
shutdown (Topg = Tgen = 0, Weng = Wyen = 0).

Mechanical Connection Electrical Connection

Fig 1 Powertrain of the series HEV
The battery model is established as an internal
resistance model:

dSoC Voc—|Vé—4RpattPpatt)
= ’

dt 2RpattChatt

Ppatt = Pmot + Pgen (2)
V,c denotes the open-circuit voltage. Ry, denotes
the internal resistance of battery. The charge and
discharge curves of Rp4e are different. Ppgee denotes
the battery load power, which equals the sum of motor
power P, and generator power Fye,. The vehicle’s
parameters and efficiency maps of the engine and
motors are calibrated from bench tests.

2.2 EMS based on NE

The deep neuroevolution based EMS is built upon
deep neural networks. The energy management
problem is modeled as a temporal decision process. In
each time step, the network takes an action according
to the state of the HEV. The neural network is a
mapping between the power assignments and vehicle
state. The aim of the neural network is to find the
optimal strategy gives the maximum return. In this
study the state s; of the HEV are defined as a 3-
dimentional vector (v, accy, SoC;), in which v, acc;
and SoC; denotes velocity, acceleration and state of
charge respectively.
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Fig 2 Efficient operation trajectory and efficiency map of the
engine

For EMS of a series plug-in HEV given in Fig 2, the
primary control parameters are torque and rotation
speed of the engine. The work point of the engine
determines the recharge power and efficiency of the
battery. With a well-calibrated engine map, we can
obtain the efficient operation trajectory of the engine.
The action of the neural network can be defined as the
output power of the engine F,,4. The torque and
speed of the engine can then be obtained through
interpolation on the operation trajectory.

The neural networks are therefore defined as

Pengt = NNg (v, accy, SoCy) (3)
NNg is a neural network parameterized by 0. The
neural network outputs the required engine power
according to the velocity, acceleration and state of
charge of battery in each step.

Instead of using gradient descent to optimize 6, the
DN approach uses evolutionary algorithms to generate
optimal parameters 6. The main benefit is that DN can
be applied more widely than DRL algorithms, which
require a sequence of state-action-reward pairs. In
contrast, DN requires only a final return F at a task to
update 6. The objective of the evolutionary strategy is
to minimize the final return F.

The final return of the model is divided into three
parts (F = Fr + F; + Fs). For a series plug-in HEV given
in Fig 1, the EMS controller should be able to recharge
the battery before the battery is very low to make sure
the HEV could finish the trip. For a simulation trip
during training, the simulation will terminated if the
state of charge is below 0.1 and the trip return is set to
—1000. The cost return is set as the RMB cost (¥ ) of
the HEV during the full trip. The resistances are
relatively high when the state of charge is higher than
0.85 or lower than 0.2. A SoC return Fg is added to the
final return to avoid the battery working under high
resistance. Fg = —10n(S0C,) — f(S0Cfing1). n(SoC,)
denotes the number of time that the SoC; is lower

than 0.15 or higher than 0.85. We also restrict the final
SoC of the HEV. f(S0Cfnq;) is defined as
20(0.3 — S0Crinat), if SOCrina < 0.3
Fo6yna) = {20003 3 SOrm), U 526
In order to search for a parameter set 6 that
achieves the optimal final return F for HEVs, the
slightly modified DN algorithm proposed in [] is used. At
every iteration, a population of parameter vectors is
perturbed by 0 4+ ce. € is a random variable. ¢ is a
fixed value. Then we evaluate the final returns
F (0 + o€e) of the populations on a same trip.
We only use the information provided by the
population that achieved higher return (F(Hg + oei) >

(4)

F(Hg)) to evolve the neural networks parameter 6.
The return F(Bg +oei),i =1,...,n may exhibit very
large variance. We reshape the return F(9g+oei)
according to the rank r; of F(9g+cei) in the
population. The reshape function is defined as

max (0,log; (n7g+1)—10g2 (ri+1)) 1

Rr(€) = = i — 5
F(El) Zi‘g max (0,10g2(7g+1)—10g2(ri+1)) + Ng (5)

Eqg (5) maps all the return into the range (ni, 1+ ni)
g g

Only the population ranked in the first half outputs

reshaped returns above é.

Different from the stochastic gradient descent in [],
we use Adam optimizer to [] evolve neural networks
parameter 8. We found that Adam optimizer could
help the neural networks to avoid local optimum that
never uses the engine. See algorithm 1 for pseudo-code
of our proposed algorithm for NE based EMS for HEV.
The process 4 in Algorithm 1 can run in parallel by
adopting multithread technology, which can reduce the
computation time.

Algorithm 1 Deep neuroevolutionary for energy
management of hybrid electric vehicle

1: Input: Driving cycle D, noise standard deviation o, initial
policy parameters 8,, number of population n.

2:for g =0,1,2,... do

3: Sample €,€,, ...,€5 ~N(0,1)

4: Calculate final returns F(Hg + O'Ei) on D using
simulated HEV models

5: Reshaping final return Ry (€;) using Eq (5)

6: Updating 6, using Adam on gradient iRF(ei)ei

7: end for

3. SIMULATION EXPERIMENTS

The DN based EMS model are then simulated for
the input of five consecutive ChinaCity standard drive
cycle since 1 drive cycle would not show desirable
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comparison and maximum capability of PHEV vehicle.
The total distance traveled by vehicles is 35.3km. The
DN based model is compared with DRL based approach
deep Q networks (DQN) proposed in [8] and global-
optimal method DP. In order to guarantee the
comparison between DN and DQN is fair, the neural
networks of DN and DQN are set with a similar structure
and same hidden activation. The inputs of DN and DQN
are (v, accy, SoCt). They all have two hidden layers
with 80 neurons and SELU activation. The outputs of DN
is the power of the engine, whereas the outputs of DQN
is the estimated Q value of action to set engine power
to  {-5kW,-1kW,0kW,+1kW,+5kW,+25kW,engine_off}.
The initial SOC of the PHEV is set as 0.5.

Table 1 The performace of DN, DQN and DP on 6xChinaCity

Method RMB Fuel Electricity ~ Final  Training Evaluation
cost(¥) Cost(¥Y) Cost(¥) SoC time (s) time(s)
DN 10.53 8.520 2.010 0.246 612.21 0.571
DQN 12.26 12.09 0.176 0.462  1430.32 2.221
DP 10.40 8.751 1.649 0.300 \ 755.85

As shown in Table 1, fuel economy of DN based
energy management strategy is more close to global
optimal DP compared with DQN. It only consumes 10.53
¥ to finish the trip, which is 0.13¥ higher than DP.
DQN uses 12.22¥ . Another advantage of DN is that it is
faster in both training and evaluation process. In our
experiments, DN takes around 1500 episodes to reach a
stable performance. DQN takes 1000 episodes. DN is
faster because it could run a large amount of episodes
in parallel. DN is also faster during evaluation. Although
the neural networks of DN and DQN are set with same
hidden layer structure and activation function, the
neural networks output of DN is a value corresponding
to the engine power, the one of DQN is a vector of 7
dimensions. This small difference makes the neural

networks structure of DN simpler and faster.
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Fig 3 Battery SOC trajectories of DN, DQN and DP
Fig 3 shows SOC trajectories of DN, DQN and DP on
6xChinaCity. Notably, DP is able to determine the best
recharge timing with global driving cycle information.
DN starts recharging when battery SOC is below 0.26.

The reason is that the future driving cycle is unknown
for DN, therefore it is not able to learn the optimal
recharging behavior when SOC is high. Its energy
management strategy is similar to the EMS rule that
designed by expertise. DQN does not produce
satisfactory SOC trajectory. It starts recharging when
SOC is lower than 0.46, which resulted in higher fuel
consumption. The SOC trajectories indicate that DN is
more powerful for EMS of HEV compared with DRL
based approach DQN.

4. CONCLUSION

In this paper, we propose a deep neuroevolution
based energy management strategies for a plug-in
hybrid electric vehicle. The comprehensive experiments
on 6 x ChinaCity driving cycle demonstrate deep
neuroevolution outperforms deep reinforcement
learning approach. This work introduces a potentially
alternative EMS method for HEVs.
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