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ABSTRACT

The way towards a more sustainable future,
involves increasing amounts of variable renewable
energy (VRE), yet the inherent variability in VRE
generation poses challenges on power system
management. In this paper, a method is presented to
quickly assess the fluctuating discrepancies between
VRE production (wind and solar) and electricity
consumption for system planning purposes. The
method utilizes a discrete Fourier transform (DFT)
analysis to disentangle the energy storage and power
flexibility requirements on different frequencies and is
applied here to different geographical areas and to
current and future scenarios in both real and simulated
hourly data. Novelties include a subdivision of the
residual load in more temporal scales than usually
adopted, a pie chart visualization to compare the
strength of different oscillations and a ready-to-use
Python module.
Keywords: Energy storage, Flexibility, flexible load,
power system planning, renewable power, timeseries
analysis

1. INTRODUCTION

Europe is on a steady course towards a higher
penetration of VRE, having seen a 4-fold growth in VRE
capacity from 2007 to 2016 [1]. Designing future energy
systems is key to handling the ever higher penetration
levels of VRE. Currently, much of the imbalance
between gross consumption and VRE generation (in the
following; residual load or L™) is handled by units
running on coal or gas, however this does not align with
global goals of reducing CO, emissions [2]. Another

option is to trade with neighboring countries, but in
some cases it will be economically favorable to
implement flexibility options in terms of energy storage
(ES) and demand response (DR). A study of the flexibility
requirements in Denmark, a world leader in integrating
wind power [3], is of importance to other states and
countries aiming at higher wind penetration such as
Texas, Spain, Sweden, Germany, UK and West China.

DFTs have often been used to decompose
oscillations in L™ into different frequency components,
and the integral of the resulting inverse DFT (iDFT) has
been used to estimate the relative importance of
different ES and DR solutions, each working on distinct
timescales from hourly to yearly [5]-[9], however
usually only 2-4 temporal scales are considered. In this
paper, L™ is divided into six frequency intervals and
jointly estimates the power and storage requirements
on these timescales. The method also stands out in
providing an easy-to-use Python tool to quickly analyze
real and simulated data in other scenarios.

This paper is organized as follows; Section 2
describes the analytical methods applied to the data,
Section 3 presents an overview of the data used, while
results and discussion can be found in Section 4,
followed by a conclusion in Section 5.

2. DATA ANALYSIS METHODS

In order to separate long from short oscillations,
the DFT of the mean-subtracted residual load timeseries
is calculated. Then the DFT is split into segments of
different frequency intervals. For the present work,
Table 1 lists the frequency intervals chosen.

Selection and peer-review under responsibility of the scientific committee of the 11th Int. Conf. on Applied

Energy (ICAE2019).
Copyright © 2019 ICAE



Timeseries of electric load and VRE
power production from either
real or simulated data

L

FANFARE

. _FIOW Fast Assessment Numerical tool for Frequency
direction of Analysis of Renewable Energy integration scenarios
analytical
steps Application of DFT t { idual load i
applied to pplica o(;l_ﬂu tfro separa_etrem Iua oad in
timeseries ifferent frequency intervals
data (i) Lres (ii) Power (iii) Storage

oscillations Requirements Requirements

Figure 1 Flow Chart of the FANARE algorithm developed
specifically for this work.

All data analysis takes place in Python 3, and the
source code (named FANFARE) is available at
https://kpolsen.github.io/FANFARE/. Figure 1 provides a
quick overview of the data processing flow in FANFARE.
After reading in the hourly data from either real or
simulated data, L™ is calculated for all or a selected
time period of the data and a DFT is applied. For each
frequency interval in Table 1, a window-function is then
applied to the DFT, basically setting the power outside
the frequency interval to 0. By taking the iDFT of each
truncated DFT, the oscillations in each frequency
interval can be studied in detail. The ‘Timescale' in
Table 1 is defined as twice the sinusoidal period
corresponding to the frequency intervals, such that for
instance summer/winter variations are included in the
seasonally, "3 mos. - 1 yr', and not the yearly '>1 yr'
timescale.

Three options are sketched out in Figure 1 and
described in the following: In option (i), the energy
stored in different oscillations in L™ is investigated by
integrating the absolute value of the iDFT for each
frequency interval. In option (ii), the iDFT of each
frequency interval is studied with box plots, in order to
see the evolution in power requirements between
different datasets. Finally, in option (iii), the storage
requirements on different timescales are considered by
taking a cumulative sum over the iDFT of each
frequency interval, and calculating the maximum spread
between those values as a measure of the necessary
storage capacity for a set of ES or DR solutions working
on the corresponding timescale. As demonstration of
FANFARE in action, we apply methods (i)-(iii) to the data
described in the following section.

Table 1 Frequency Intervals Used to Separate Fluctuations
on Different Timescales.

Period Frequency [Hz] | Timescale
<5hrs 2.8e-5—5.6e-4 Hourly
5-24 hrs 5.8e-6 —2.8e-5 Intra-daily
24 hrs—-7d 8.3e-7-5.8e-6 Daily

7 d -3 mos. 6.4e-8 - 8.3e-7 Weekly
3mos.—1yr 1.6e-8 — 6.4e-8 Seasonally
>1yr 0-1.6e-8 Yearly

3. POWER SYSTEM DATA

An overview of the hourly power system timeseries
data used in this work is given in Table 1. Each dataset
contains wind and solar production as well as gross
electricity consumption (P®"™), including transmission

losses.
Table 2 Hourly data of wind and solar power as well as
gross consumption used in this work.

Time range Source

DK 01/2011-01/2019 Energinet [13]

DK scenario | 2020, 2030, 2050 Balmorel [12]

Bornholm 02/2017 - 01/2019 Powerlab.dk [14]

DK stands for all of Denmark and contains separate
timeseries for DK1 (West Denmark) and DK2 (East
Denmark) via the website of the Danish TSO Energinet.
BO stands for the island of Bornholm, for which data
was extracted from the island’s live SCADA system
maintained by the PowerlLab.dk project. We note that
biomass has been excluded from all datasets here, in
order to make better comparisons across datasets. In
addition, data from two larger solar power parks
installed on Bornholm and effective from May 2018 is
not yet in the dataset available for this study. The
forecasted DK data comes from the North Sea Offshore
Grid — DK project-based scenario, which optimized
investments in generation and transmission towards
2050 in the North Sea region. The assumptions used for
this scenario can be found in [10]. The optimization was
performed with Balmorel [12], which is an open-source
energy system optimization tool with focus on
electricity and district heating systems. The model is
deterministic with a bottom-up approach. The wind and
solar generation data used in Balmorel were simulated
using the CoRES tool [11]. The handling of VRE
technology development and optimization of
investment decisions towards 2050 are shown in [10].

In terms of hourly share of VRE, ayge, measured as
VRE production divided by P®™, Figure 2 compares the
real data for DK and BO in 2018 with the DK scenario
years 2030 and 2050 from Balmorel. As expected, the
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VRE share distribution will shift considerably towards
higher values when moving into the next few decades.
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Figure 2 Hourly share of VRE in DK and BO for year 2018
(black and grey, respectively), and for DK scenario years 2030 and
2050 with Balmorel (green dot-dashed and dotted, respectively).

4. RESULTS AND DISCUSSION
In this section we apply the methods described in
Section 2 to the data described in Section 3.

4.1 L™ Oscillation Analysis

Option (i) in Figure 1 is exemplified here with the
real data for DK, DK1, DK2 and BO in Figure 3, where the
oscillations in L™ can be easily compared from one
region to another. DK1 contains the majority of installed
wind power capacity in DK, with annual wind
penetration of 56% in 2017, whereas DK2 reached a
wind penetration of just 24% in 2017. Therefore L™ in
DK2 is more controlled by the daily pattern of P, as
reflected in the increased energy of 5-12 hrs
fluctuations (blue wedge) compared to that of DK1. As
expected, the short, <5 hrs fluctuations are most
important in BO due to the high wind penetration on
the island (32% in 2017) and lack of geographical
smoothing over the relatively small area of BO (588
km?) compared to the other regions analyzed.

4.2 Power Requirement Analysis

Option (ii) in Figure 1 is applied to the DK dataset
for 2018 and the forecasted data (for 2020, 2030 and
2050) from Balmorel in Figure 4. Due to the nature of
Fourier transforms, the median of each distribution
(horizontal line) is close to 0, but the spread in power
requirements increases significantly on all timescales
from 2020 to 2030, but less so from 2030 to 2050. Only
for the intra-daily and seasonal power requirements, is
there a sudden increase going from 2030 to 2050, which
can be traced to a significant increase in solar power

investments in the model, going from an annual
penetration level of 5% to 21%, inducing strong
oscillation patterns on these timescales (i.e. night/day
and winter/summer).

BO
DK2

6%

25%

15% 16% 2% 26% 27%
25% 31%
21%
s Hourly
Intra-daily
28% Daily
Weekly
Seasonally
26% m Yearly

Figure 3 Relative distribution in integrated residual load on
different timescales in regions of increasing geographical area,
growing from center and out.
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Figure 4 Box plot of distributions in L™, comparing real

dataset in 2018 to forecasted data in 2020, 2030 and 2050.
4.3 Storage Requirement Analysis

Option (iii) in Figure 1 is used on the DK dataset for
2018 and the DK scenario datasets (for 2020, 2030 and
2050) from Balmorel to generate the storage numbers
shown in Figure 5 and listed in Table 3. We note that
the mean of the residual load is not part of any of iDFTs
used, which is equivalent to saying that all oscillations
>1 yr are assumed to be handled by a long term energy
storage. Overall, the required capacity for storage
increases on all timescales towards 2050, as expected
from the increased VRE penetration (from % in 2018 to
148% in 2050). As in the case of power requirements,
the method shows that the 2020 scenario is comparable
to the real 2018 data. Storage requirements increase

3 Copyright © 2019 ICAE



drastically from 2018 to 2030 (100-180%), but not so
much from 2030to 2050 (only substantial at shortest
and longest timescales with 100 and 150%,
respectively).
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Figure 5 Storage requirements from DFT analysis of L' in

2018, 2020, 2030 and 2050 data.

Table 3 Storage requirements on different timescales now
(using 2018 real data) and in future years with Balmorel forecasted
data [GWh]

Period 2018 2020 2030 2050
Hourly 5.4e0 8.8e0 1.5el 2.1lel
Intra-daily 4.3el 5.3el 1.3e2 1.3e2
Daily 2.1e2 2.0e2 4.8e2 5.6e2
Weekly 6.0e2 5.1e2 1.4e3 1.6e3
Seasonally 7.9e2 1.8e3 1.8e3 4.8e3

5. CONCLUSION

A method based on DFT analysis has been
presented to analyse residual load on timescales of
importance for power system planning. The method is
made publically available as the Python module
FANFARE. By demonstration on real and simulated data,
we show how the method can be used to draw the
following conclusions on the Danish power system:

i.  Short oscillations in L™ are most important on
the smallest geographical scales due to the
reduced geographical smoothing of wind.

ii.. A predicted strong increase in solar investments
in 2030-50 results in a significant increase in the
intra-daily and seasonal power requirements.

iii. Storage requirements will increase significantly
in 2018-2030 on all timescales, but less in 2030-
2050, using output from Balmorel scenarios.

In future work we plan to apply FANFARE to datasets of
higher resolution in time, and study the effect of
including new ES and DR solutions, such as vehicle-to-
grid which was not included in the current Balmorel
runs.
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