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ABSTRACT 
While energy systems become more and more complex 
mathematical optimization can be used to generate good 
operating strategies for power generators and 
consumers. In order to reduce the complexity and thus 
the computing time for solving the Unit Commitment 
Problem several approaches for abstracting the original 
problem are introduced in literature. This paper focuses 
on a theory for the information theoretical evaluation of 
aggregation approaches in operating strategy 
optimization of energy systems. The theory is validated 
via two aggregation approaches, which aim at reducing 
computing time for solving the optimization problem, 
while maintaining the solution quality of the original 
problem. 
 
Keywords: industrial microgrid, unit commitment 
problem, optimization, information theory  

NONMENCLATURE 

Abbreviations  

CHP Combined heat and power plant 

MILP Mixed integer linear programming 

SOC State of Charge 

UCP Unit Commitment Problem 

1. INTRODUCTION 
Climate change has been a topic of world politics for 
several decades [1]. In order to reduce CO2 emissions, 
one of the most important measures is the gradual 
substitution of electricity supply from conventional 
power plant technologies by renewable energies such as 
wind power and photovoltaics [1]. Energy-efficient 
technologies, i.e. consumer-oriented cogeneration are 
increasingly integrated into the electrical energy supply. 

In contrast to conventional power plants, the renewable 
energy sources wind and photovoltaics are weather 
dependent and show a volatile feed-in behavior [2]. 
Since generation and consumption of electrical energy 
must always be in balance, more and more decentralized 
stakeholder must take over system responsibility. The 
scheduling of many decentralized plants on the energy 
market can be ensured by mathematical optimization 
procedures, such as Mixed Integer Linear Programming 
(MILP). The Unit Commitment Problem (UCP) in the 
electrical energy market mainly focuses on operating 
strategies of plants to fit a certain energy demand by 
minimizing cost or maximizing the system’s revenue in 
energy supply [3]. As the number of plants increases so 
does the complexity of the resulting optimization 
problem. This can lead to high computational effort and 
out-of-memory problems [4]. 

In literature, there are several approaches with the 
aim of handling the complexity of the UCP [3]. In addition 
to decomposition methods, like Lagrange Decomposition 
or problem-specific heuristics, the reduction of the 
problem size is intended in order to solve complex 
optimization problems while maintaining optimality [5]. 
Aggregation and subsequent disaggregation techniques 
provide an efficient way to reduce the problem size while 
still addressing all components of the original 
optimization problem. For this purpose, parts of the 
original problem are merged into a smaller, less complex 
surrogate problem, which preferably provides a good 
approximation solution [6]. 
In all the approaches considered in this paper [4,6–10], a 
good approximate solution is calculated by simplifying 
the original problem. This leads to the questions, which 
parts of an optimization model actually add value to the 
calculated solution and which simplifications can be 
applied to optimization problems with negligible loss of 
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optimality. To answer these questions, a strategy is 
presented, how optimization problems can be analyzed 
regarding the added value of model components to the 
actually executed operating strategy. The following 
section firstly introduces the core idea of information 
theory within mathematical optimization for solving the 
UCP. Afterwards two aggregation approaches, time-step 
aggregation and plant aggregation, are used to evaluate 
the presented information theoretical assumptions for 
mathematical programming. Lastly, a conclusion about 
the results is made.  

2. INFORMATION THEORY AND OPTIMIZATION 

Russell and Norvig describe the value of information in 
terms of operating strategies by the following [11]: “In 
sum, information has value to the extent that it is likely 
to cause a change of plan and to the extent that the new 
plan will be significantly better than the old plan.” This is 
an important basic hypothesis for the qualitative 
evaluation of information in optimization problems. A 
quantitative measure for the information content of a 
random variable can be found in information theory with 
Shannon's entropy [12]. If decision variables of an 
optimization problem are regarded as continuous 
stochastic variables, it is possible to evaluate their 
information content according to the information-
theoretical measure of information entropy. Before the 
optimization problem is solved, there is only an uncertain 
range of solutions for the variables optimal outcome. If 
the decision variable itself can be predicted depending 
on other decision variables (without solving the 
optimization problem), it may be possible to remove the 
variable from the optimization problem without 
changing the overall problem structure. For reducing the 
complexity, simplified model formulations must be 
defined, which summarize several predictable decision 
variables in such a way, that the original and the 
simplified model will have an identical or similar resulting 
schedule as an optimal solution. In summary, decision 
variables can be aggregated with little loss of information 
if the following requirements are met: 
- The decision variable shows low conditional 

entropy 
- Neighboring or dependent decision variables 

show low conditional entropy 
- A simplified model formulation exists, which 

represents the decision variables outcome 
considering its conditional entropy of the original 
problem  

This perspective makes it possible to identify and 
eliminate redundancies in the optimization problem in 

order to reduce the problem size, while preserving 
information of the original problem. 
In order to formulate the UCP as a mixed integer linear 
optimization problem, technical and economical 
characteristics are mapped via constraints and an 
objective function. In the following an optimization 
model based on [13] providing a cost-optimized 
operating strategy for a CHP in combination with a 
thermal storage is used for illustration purposes. Plant 
characteristics are modelled time-step and plant-
specifically. As all time-step dependent constraints, time-
step overlapping constraints are also repeated for each 
individual time-step. This results in large optimization 
problems and repeated symmetrical model formulations 
in the optimization model, as can be seen in Fig. 1. In this 
paper, symmetries in the context of mathematical 
optimization describe identical, repeating model 
formulations. If decision variables in related, 
symmetrical model formulations are very likely to be 
occupied similarly one can speak of redundancies in the 
optimization problem. Redundancies are therefore a 
subset of symmetries. As shown in Fig. 1, redundancies 
can be reduced by aggregating symmetrical model 
formulations. With an energy content 𝐸𝑡, the Power 𝑃𝑡

𝑎 

and an energy demand 𝑃𝑡
𝑑 the energy content for the 

following time-step 𝐸𝑡+1 is calculated by 𝑬𝒕+𝟏 = 𝑬𝒕 +

𝜟𝒕 ∙ (𝑷𝒕
𝒂 − 𝑷𝒕

𝒅) . If 𝑃1
𝑎  and 𝑃2

𝑎  are probably similarly 
assigned (a), this redundancy can be eliminated by 
combining time-step 1 and time-step 2 (b). 

 
Fig. 1: Visualization of symmetries and redundancies arising 

from repeating time-steps in a typical UCP 

Besides of time-steps, symmetries can also arise from the 
modelling of similar plants. If the operating strategy of 
several identical plants is optimized, this leads to a 
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duplicate implementation of all decision variables, 
objectives and constraints within a time-step. This results 
not only in unnecessarily large problems, but also in 
problems that are difficult to handle for commercial 
solvers based on Branch and Bound algorithms like IBMs 
CPLEX, as could be shown in [4].  

One way to reduce the complexity of the problem is to 
reduce the time horizon under consideration. In order to 
still be able to optimize over long periods of time, the so-
called "rolling horizon" approach has been established in 
the optimization via model predictive control. A short 
time period of the UCP is repeatedly optimized, whereby 
only the first calculated actions are executed [14]. When 
using rolling horizon algorithm, the optimization of all 
time-steps that are not realized as actions only aims at 
obtaining a foresighted plant schedule. This in turn 
affects the degree of detail with which these time-steps 
have to be modelled in order to obtain an optimal 
schedule, since the influence of these variables on the 
first time-step(s) is more relevant. In most approaches 
optimizing the UCP, for determining the system state in 
the current time-step 𝑥𝑡, knowledge of the state in the 
preceding time-step 𝑥𝑡−1 is sufficient, so the problem 
satisfies the first Markov property [15]. In the case of the 
operating strategy optimization, this means that all 
information of past time-steps is represented by state 
variables, such as storage filling levels, and thus 
dependencies only have to be mapped between two 
adjacent time-steps. This automatically leads to the fact 
that specifications of future time-steps are less and less 
relevant for the actual actions to be implemented. 
Aggregation methods can take advantage of this, since in 
future time-steps higher inaccuracies are allowed for 
simplifying the problem. 

3. AGGREGATION APPROACHES 
In this section we will validate the presented theory by a 
qualitative approximation of information entropy. 
3.1: Time-step aggregation 
As discussed in section 2, the complexity and thus 
symmetries and redundancies in UCP models increase 
with an increasing number of time-steps. Although only 
the first time-step is operated in rolling horizon 
approaches, the quality of optimization results increases 
by integrating longer forecast series. This raises the 
question, which time interval Δt and time horizon T is 
necessary for optimizing operating strategies in the UCP. 
Changing parameters over time-steps in UCP are 
fluctuating energy prices as well as energy demands 
while plant characteristics usually remain unchanged. 
Since energy is traded as products on German energy 

markets at fixed 15-minute intervals, the time interval Δt 
for the optimization of smart grids is usually set to 15 
minutes (0.25 hours). For each 0.25-hours interval, the 
model formulation is repeated, whereby a simplification 
of the problem can easily be achieved by combining 
individual time-steps into time-steps with a larger time 
interval. If the conditional entropy of decision variables 
is relatively low due to similar parameterization of 
individual, adjacent time-steps, the optimal allocation of 
the decision variables is more likely predictable and 
aggregation can be performed with little loss of 
optimality. Hypothesis 1 is introduced to estimate the 
conditional entropy of decision variables: 
Hypothesis 1: The more similar adjacent energy prices 
and demands in forecast series are, the more similar is 
the operating strategy of a plant over different time-
steps and the less information and optimality is lost when 
these time-steps are aggregated. 
In the following, an approach with three adjustable 
parameters is introduced to qualitatively analyze the 
hypothesis and find time-steps of the UCP that can be 
aggregated with negligible information and thus 
optimality loss. Since not only the environmental 
conditions, but also the respective state at the beginning 
of a time-step, such as the energy content of the thermal 
storage, have an effect on the operating strategy during 
the time-step, hypothesis 1 is only an approximation to 
the real conditional entropy of the time-steps. For this 
reason, aggregation on the basis of hypothesis 1 is only 
implemented after a defined time-step 𝑡agg, in order to 

reduce the negative effects of the resulting error on the 
first time-step. The second parameter is a list of potential 

time intervals LΔt to which the former time-steps are 
aggregated. If, for example, the original time interval Δt 

is 0.25 h and the list LΔt contains {0.5,1}, then 0.25 h 
time-steps may be aggregated to time-steps with 
intervals of 0.5 h or 1 h. For adjacent time-steps a low 
standard deviation σ describes little fluctuation of energy 
prices and energy demand and thus following hypothesis 
1 the similarity of the resulting optimal operating 
strategy for different time-steps. Therefore a standard 
deviation filter (SDF) is introduced. The task of the SDF is 
to find time-steps of the UCP that can be aggregated with 
negligible information and thus optimality loss to reduce 
redundancies in existing symmetries of the problem. 
The standard deviation of each input parameter is 
calculated for the adjacent time-steps depending on the 

intervals in list LΔt. To standardize σ, the individual σ of 
each parameter must be normalized and then multiplied. 
This normalized standard deviation σnorm  can be 
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compared to a manually defined threshold value 

σthresh: 

σ𝑡
norm = ∏

𝜎𝑡,𝑗

𝜎𝑗
ave

𝑗∈𝐽

≤ σthresh    ∀𝑡   (1) 

𝜎𝑗
ave is the mean standard deviation of parameter j. To 

find time-steps which can be aggregated the following 
procedure is carried out. Firstly, the three parameters 
are set and the normalized σnorm is calculated for the 

highest time interval in list LΔt . Then, the time-steps 
with the lowest σnorm  which fits the threshold are 
aggregated to one time-step. This is repeated until all 
time-steps which meet the threshold are considered. 
After that the procedure is operated for the next time 

interval in LΔt until all time intervals are used. For each 
aggregated time-step, the new energy price and demand 
is calculated by the mean value of the former time-steps. 
Finally, the optimization for the aggregated UCP is 
operated. This procedure is repeated for every plant with 
different energy demands. 
In order to aggregate certain time-steps in a UCP for 
complexity reduction with regard to their information 
theoretical value and following hypothesis 1, time-step 
aggregation is performed for optimizing a plant pool of 
three CHP systems with individual storage systems each. 
For this purpose, from a defined 𝑡agg, time-steps with 

similar parameterization are combined (see Fig. 2.). 

 
Fig. 2: Visualization of the time-step aggregation for three 

different CHP plants. 

The procedure of time-step aggregation is validated by a 
comparison between the presented and a simple 
approach (Fig. 3). Both approaches are again related to a 
reference model without aggregation. In the simple 
aggregation approach time-steps are aggregated 
independently of the fluctuation of prices and heating 
demands starting from time-step 𝑡agg = 8 . Since the 

simple aggregation cannot combine different time-step 

sizes, LΔt = {0.5} contains only one time-step size. A 
comparison shows that the revenue of the presented 
approach is significantly higher than the one of the 
simple approach. By targeted combining time-steps, a 
significantly higher accuracy can be achieved than by 

randomly aggregation in the simple method. At the same 
time, the calculation time in the presented approach is 
reduced by almost 40% as shown in Fig. 3. 

 
Fig. 3: Comparison of simple aggregation app vs. presented 

time-step-aggregation approach 

Fig. 4 shows that the operating strategy with time-step 
aggregation is quite similar to the one without 
aggregation (small time horizon visualized). Therefore, 
the assumption from hypothesis 1 is confirmed, with 
which a good approximation of the conditional entropy 
can be achieved.  

 
Fig. 4: Operation Strategy with and without time-step 

aggregation for time-steps 56 to 96 

Although only a rough estimation of the conditional 
information entropy can be achieved via hypothesis 1, 
targeted simplifications can still be implemented in the 
optimization problem. By a more exact estimation of the 
conditional entropy between decision variables as well 
as by further simplified modelling approaches, a much 
better trade-off between computing time and solution 
quality can be achieved. 
3.2: Plant aggregation 
Similar plants, which are independent from each other, 
will have a similar operating strategy under similar 
boundary conditions, so information-theoretical 
redundancies can also be assumed here. To overcome 
these redundancies, with the approach described in this 
work several plants are merged into a single plant, which 
is modelled by only one set of decision variables and 
constraints (Fig. 5). In order to obtain an approximation 
of the conditional entropy between the decision 
variables of different plants, the following hypothesis is 
tested in this paper: 

𝑡 > 𝑡𝑎𝑔𝑔 
 𝑡 > 𝑡𝑎𝑔𝑔  

𝑡 ≤ 𝑡𝑎𝑔𝑔 
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Hypothesis 2: The more similar plants and their boundary 
conditions (e.g. utilization and prices) are the less 
information and thus optimality is lost when the facilities 
are aggregated in terms of operating strategy 
optimization. 
 

 
Fig. 5: Aggregation of plants in the UCP at time-step 𝒕𝒂𝒈𝒈 

The aggregation itself is achieved by merging plants with 
similar characteristics into one aggregated plant. The 
parameters of the aggregated plant are calculated by 
summing up the power, the capacity, the inertia and the 
heat demand and taking the average efficiency of the 
individual systems. With aggregation of several 
individual plants to one virtual plant, however, some 
information on how the individual system actually 
operate is lost. Since only the first time-steps are 
relevant in the case of the repetitively executed 
operational strategy optimization, the detailed 
information of the optimization itself is also more 
important for current time-steps than for future ones. 
Accordingly, the described loss of information is more 
justifiable in future time-steps. 
In the considered case of the CHP optimization problem 
with thermal energy storages, there are various 
characteristic values in which the systems can differ from 
each other. For example, the maximum electrical power 

output of the CHPs 𝑃el,max , the capacity of the heat 
storages 𝐸 max or the thermal demand profile can vary 
for different systems. In this paper the fact was 
outpointed that due to the rolling horizon optimization 
only the first time-step is actually executed. Therefore, in 
the plant-aggregation approach, plants are aggregated 
from a future time-step tagg  onwards, as it was 

implemented in time-step-aggregation. Here, tagg  is 

selected in such a way that the individual plants can 
reach any possible subsequent state in the range from t 
= 0 to t =tagg . In the case of cogeneration units, this 

subsequent state is determined by the energy content of 
the thermal storages, which in turn depends on the 
maximum thermal power production of the 

cogeneration Pth,max, the heat demand Pdemand and 
the capacity of the storages Emax. 

𝑡agg = max (
𝐸max

(𝑃th,max − 𝑃demand)
; 

𝐸max

𝑃demand
)   (2) 

The plants can therefore still react flexibly and, if 
necessary, compensate inaccuracies caused by the 
aggregation in previous calculations. Fig. 6 shows the 
idea of the presented approach considering a starting 
SOC = SOCstart. 

 
Fig. 6: SOC range accessible from t = 0 to t = tagg  

Chosen results calculated via 2880 consecutive 
optimization runs are presented in Tab. 1. The 
parameterization of the different systems was varied 

with respect to Pel,max, Emaxand Pdemand as well as 
the used tagg. In the following either a fixed tagg = 8 

or a dynamic tagg calculated via the formula mentioned 

in section 3.1. The results show that the method 
presented significantly reduces the computing time for 
solving the optimization problem while maintaining the 
quality of the solution. However, the dynamically 
calculated aggregation time-step tagg only provides an 

orientation here, since results for a constant tagg were 

significantly better in some cases. 
Tab. 1: Summery of the results of the plant aggregation 

approach 

Experiment 𝒕𝒂𝒈𝒈 Reduction of 

Computation 

time  

Optimality 

gap 

3 x CHP systems 

𝑃MAX = 𝟐𝟎𝟎𝟎; 𝐸MAX = 𝟒𝟒𝟎𝟎; 

𝑃demand = 𝑄Reference 

8  91,7 %   1,64% 

3 x CHP systems 

𝑬𝐦𝐚𝐱 = 𝟒𝟒𝟎𝟎 ; 𝑷𝐝𝐞𝐦𝐚𝐧𝐝 =
𝑸𝐑𝐞𝐟𝐞𝐫𝐞𝐧𝐜𝐞 ; 𝑷𝐦𝐚𝐱,𝟏 = 𝟐𝟎𝟎𝟎 ; 

𝑷𝐦𝐚𝐱,𝟐 = 𝟐𝟎𝟎; 𝑷𝐦𝐚𝐱,𝟑 = 𝟐𝟎 

8 91,5 % 10,44% 

3 x CHP systems 

𝑷𝒅𝒆𝒎𝒂𝒏𝒅 = 𝑸𝐑𝐞𝐟𝐞𝐫𝐞𝐧𝐜𝐞 ; 𝑷𝒎𝒂𝒙,𝟏 =
𝟐𝟎𝟎𝟎 ; 𝑬𝐦𝐚𝐱,𝟏 = 𝟒𝟒𝟎𝟎 ; 𝑬𝐦𝐚𝐱,𝟐 =
𝟒𝟒𝟎𝟎; 𝑬𝐦𝐚𝐱,𝟑 = 𝟒𝟒𝟎𝟎; 

8 97,4 % 8,72 % 

3 x CHP systems 

𝑬𝐦𝐚𝐱 = 𝟒𝟒𝟎𝟎 ; 𝑷𝐦𝐚𝐱 = 𝟐𝟎𝟎𝟎 ; 

𝑷𝐝𝐞𝐦𝐚𝐧𝐝,𝟏 = 𝑸𝐑𝐞𝐟𝐞𝐫𝐞𝐧𝐜𝐞 ; 𝑷𝐝𝐞𝐦𝐚𝐧𝐝,𝟐 =
𝑸𝐑𝐞𝐟𝐞𝐫𝐞𝐧𝐜𝐞 ∗ 𝟎, 𝟓 ; 𝑷𝐝𝐞𝐦𝐚𝐧𝐝,𝟑 =
𝑸𝐑𝐞𝐟𝐞𝐫𝐞𝐧𝐜𝐞 ∗ 𝟎, 𝟏 

8 89,0 % 11,49 % 

3 x CHP systems 

𝑬𝐦𝐚𝐱 = 𝟒𝟒𝟎𝟎; 𝑷𝐦𝐚𝐱 = 𝟐𝟎𝟎𝟎; 

𝑷𝐝𝐞𝐦𝐚𝐧𝐝,𝟏 = 𝑸𝐑𝐞𝐟𝐞𝐫𝐞𝐧𝐜𝐞; 𝑷𝐝𝐞𝐦𝐚𝐧𝐝,𝟐 =
𝒔𝒊𝒏𝒆; 𝑷𝐝𝐞𝐦𝐚𝐧𝐝,𝟑 = 𝒄𝒐𝒏𝒔𝒕 

8 92,9 % 4,31 % 

14,6 90,1 % 2,52 % 

10 x CHP systems 

𝑷𝐦𝐚𝐱 = 𝟐𝟎𝟎𝟎 ; 𝑬𝐦𝐚𝐱 = 𝟒𝟒𝟎𝟎 ; 

𝑷𝐝𝐞𝐦𝐚𝐧𝐝 = 𝑸𝐑𝐞𝐟𝐞𝐫𝐞𝐧𝐜𝐞 

8 99,6 % 1,35 % 

5,16 99,7 % 2,76 % 

 
Fig. 7 shows that the operating strategy with plant 
aggregation is also similar to the one without 
aggregation (small time horizon visualized). Therefore, 

 𝑡 > 𝑡𝑎𝑔𝑔  
𝑡 ≤ 𝑡𝑎𝑔𝑔 
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the assumption from hypothesis 2 is confirmed, with 
which an approximation of the conditional entropy can 
be achieved. In some cases the aggregated CHP is 

operated at Pmin, so the power of one CHP unit equals 

0,33 ∗  Pmin, which actually means, that not all of the 
systems are used. 

 
Fig. 7: Operation Strategy with and without plant aggregation 

for one CHP for time-steps 56 to 96  

4. CONCLUSION AND OUTLOOK 
In this paper a theory for the evaluation of aggregation 
approaches in the UCP according to information-
theoretical criteria is presented. Decision variables are 
seen as stochastic variables whose optimal allocation can 
be predicted with a certain probability. The measure for 
evaluating the predictability of decision variables is 
information entropy. If the optimal allocation of decision 
variables can be predicted and the entropy is low, this 
can be used for a simplified model formulation. An 
information-theoretical evaluation of an optimization 
model is carried out by a qualitative approximation of 
information entropy in this paper. The established 
theory is validated and confirmed in first instance by two 
aggregation procedures, the time-step and the plant-
aggregation in the UCP. However, an information-
theoretical evaluation of the optimization model has 
been carried out by a qualitative evaluation of 
information entropy. Since optimization problems with 
different parameterizations are repeatedly executed 
using the rolling horizon procedure and thus all decision 
variables of the problem are optimally assigned, the 
conditional entropy of the optimization problem can be 
approximated quantitatively using this assignment. With 
this even more precise information, the aggregation 
procedure can also be carried out more precisely and 
even better results can be expected. However, the 
quantitative evaluation of the presented procedure will 
be the task of future research work. 
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