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ABSTRACT 
Organic Flash Cycles (OFCs) are preferred to convert 

low temperature geothermal energy to electricity. In 
this work, comparative studies on two kinds of systems 
aiming to recover the heat of the saturated liquid after 
flash evaporation are presented. Modified OFC (MOFC) 
mixes the saturated liquid after flashing with the cold 
working fluid to recover the heat of liquid after flashing. 
Regenerative OFC (ROFC) that use an internal heat 
exchanger to recover the part of heat of saturated 
liquid after flashing. The flash temperatures for Basic 
OFC (BOFC), ROFC and MOFC using pentane were 
optimized to maximize the net power outputs at various 
condensation temperatures. Results shows that 
recovering the heat of liquid after flashing leads to 
system performance improving, irreversible loss 
decrease and change of locations of pinch points. 
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1. INTRODUCTION 
Geothermal energy is abundant worldwide and 
independent of weather conditions and suitable for 
continuous production [1-6]. Organic Flash Cycle (OFC) 
is a state-of-the-art technology that can generate power 
using medium and low temperature geothermal energy. 
OFCs have the advantage of better temperature 
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NONMENCLATURE 

Abbreviations  

GW Geothermal water 
CW Cooling water 
WF Working fluid 
IHE internal heat exchanger 
WFP Working fluid pump 

Symbols  

η efficiency 
Q Heat flow (kW) 
h Specific enthalpy (kJ kg-1) 
s Specific entropy (KJ kg K-1) 
W Power (kW) 
m Mass flow rate (kg s-1) 
I Exergy destruction (kW) 
E Exergy 
CP Isobaric heat capacity (kJ kg-1K-1) 

 
matching during heat addition compared to organic 
Rankine cycles, which can reduce exergy losses [7], but 
additional irreversible loss caused by flash process. Basic 
OFCs separate the vapor from the liquid after the 
throttling process, the left saturated liquid which 
accounts for half of total heat input or even more would 
be wasted. Thus, the system efficiency of basic OFCs are 
quite low, more research on improving system 
performance of OFCs is needed. As previous studies 
mentioned, recovering the part heat of liquid after flash 
realized cascade utilization that will make great sense 
for improving system performance. 
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Refer to literatures of organic Rankine cycles, 
regenerative configurations could improve system 
performance[8-11]. Mago et al. [12] compared the 
energetic and exergetic performance an open-type 
regenerative ORC with that of the standard cycle. He 
concluded that the regenerative ORC can lead to 
improved energetic and exergetic performance. 
Mehrpooya et al. [13] performed an exergoeconomic 
analysis and optimization of a regenerative solar ORC 
combined with a recuperator. 

Research on OFCs with modified configurations could 
realize cascade utilization of energy, and be superior to 
other systems driven by low-grade energy have been 
reported by [14-19]. And Boccoili et al. [20] reported 
that regeneration of OFC allowed to recover part of the 
enthalpy of the liquid phase from the flash evaporator 
increasing the temperature of the liquid at the 
exchanger inlet, thus reducing the exchanger size. Kim 
[21] presented comparative exergy analysis of organic 
flash cycle with and without regeneration, results 
showed that exergy efficiency of OFC with regeneration 
was higher than that of OFC without regeneration. 

At present, the influence of mechanism of 
regeneration configurations on OFCs are not clearly 
stated. In this paper, two kinds of modified OFC systems 
to recover the part of heat of liquid after flashing are 
discussed. A modified OFC (MOFC) [22] that mixes the 
saturated liquid after flash with the cold working, which 
improves the evaporator inlet temperature of working 
fluid. ROFC are regenerative systems that use internal 
heat exchangers to recover the part of heat of saturated 
liquid after flashing. Condensation temperature [23] and 
flash temperature [24] have great impact on system 
performance. In the present, thermodynamic analysis 
on Basic OFCs (BOFC), ROFC, and MOFC at various 
condensation temperatures are carried out. 
Furthermore, the effect of condensation temperature 
and flash temperature on the systems are investigated. 

2. MODELS 
The schematics using pentane as working fluid for 

BOFC, ROFC and MOFC are shown in Figs. 1-3. As Fig.1 
shows, the working fluid after flashing of BOFC is 
throttled into condensation pressure, which produce 
great irreversible loss. As Fig.2 shows, the working fluid 
of ROFC preheated by the hot liquid after flashing 
through an internal heat exchanger that the evaporator 
inlet temperature is increased. As Fig.3 shows, the cold 
working fluid form pump 2 is mixed with the hot liquid 
after flashing, which has also recovered part of the heat 
of liquid after flashing. The parameters and boundary 
conditions are listed in Table 1. The flash evaporation 
temperatures of the systems are optimized for 
maximum net power outputs at each condensation 
temperature. 
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Fig. 1 Schematic of a BOFC with a wet cooling tower 

Table 1 Boundary conditions of the systems. 

Parameters  Value  

Geothermal water inlet temperature 150 ℃ 

Geothermal water reinjected temperature 70 ℃ 

Geothermal water pressure 2 MPa 

Cooling water inlet temperature 25 ℃ 

Reference dead state temperature 25 ℃ 

Pinch point difference in the evaporator 10 ℃ 

Pinch point difference in the IHE and condenser 5 ℃ 

Turbine mechanical efficiency 98% 

Generator efficiency 97% 

Isentropic efficiency of working fluid pump 80% 

Circulating pump efficiency 80% 

Isentropic efficiency of turbine 80% 

Circulating pump head 20 m 

Mass flow rate of geofluid 1 kg/s 
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Fig. 2 Schematic of a ROFC. 
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Fig. 3 Schematic of a MOFC. 
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Mass, energy, exergy balances for any control volume 
at steady state with negligible potential and kinetic 
energy changes can be expressed as 

in outm m =    (1) 

in in out outmQ W h m h− =  −    (2) 

heat out inE W E E I− =  −  −   (3) 

The net power outputs are calculated as  

net T WFP CPW W W W= − −   (4) 

where TW  is turbine power output, CPW  is circulating 

pump power consumption, and WFPW  is working fluid 

pump power consumption. 
The exergy destruction rate in each component of 

the system is defined as 

i
i

GWin

 =
I

E
  (5) 

3. RESULTS AND DISCUSSION 

3.1 Optimal flash evaporation temperature 

Note that the geothermal water inlet temperature 

and the reinjection temperature are fixed at 70 ℃ and 

150 ℃, respectively. As Fig. 4 shows, the optimal flash 

temperatures of ROFC and MOFC are greatly decreased 
compared to BOFC. The optimal flash temperatures for 

ROFC and MOFC are decreased 5.08 ℃-13.04 ℃ and 

8.15 ℃-16.52 ℃ , respectively. Because the optimal 

flash temperatures of ROFC and MOFC are limited by 
the reinjection temperature. If the optimal flash 
temperature is so high that evaporator inlet 
temperature could be preheated even higher than the 
reinjection temperature, which is unreasonable. The 
optimal flash temperatures for BOFC increase when 
condensation temperature increases. However, the 
optimal flash temperatures of ROFC and MOFC 
decrease as condensation temperature increases.  

Noted that increase of optimal flash temperatures 
for OFCs would increase the specific enthalpy drop in 
the turbines that produces more turbine power 
outputs, but the pressure drop in the throttle valve 
would be decreased that reduces production of vapor. 

3.2 Net power output 

Fig. 5 shows that net power outputs first increase as 
condensation temperature increases and then 
decreases for condensation temperatures above the 

optimal condensation temperature. As Fig. 6 shows, 

TW  decreases almost linearly as the condensation 

temperature increases, because specific enthalpy drop 
in the turbine decreases as the condensation 
temperature increases. As Fig. 7 shows, the slope of 

CPW  decreases as the condensation temperature 

increases. There is not much change in working fluid 
pump power consumptions at each condensation 
temperature. According to eq. (4), there must be an 
optimal condensation temperature for maximum net 
power output. Compared to BOFCs and ROFC, the heat 
of liquid after flashing of MOFC is recycled that leads to 
the least circulating pump power consumption. Results 
show that optimal condensation temperatures of 

BOFCs, ROFC and MOFC are 37.5℃, 34.5℃, and 34℃, 

respectively. Maximum net power outputs of ROFC and 
MOFC are relatively improved 22.28% and 23.14% 
compared with BOFCs at optimal condensation 
temperature, respectively. MOFC produce the most net 
power output because of the least circulating pump 
power consumption. 

Furthermore, net power outputs for ROFC and 
MOFC sharply decrease after the maximum, and net 
power outputs for BOFC decrease slowly after the 
maximum as Fig.5. Because turbine power outputs of 
ROFC and MOFC decrease sharply when condensation 
temperatures are above the corresponding optimal 
condensation temperatures. but turbine power outputs 
of BOFC decrease slowly when condensation 
temperatures are above the optimal condensation 
temperatures.  
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Fig. 4 Optimal flash temperature for the systems. 
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Fig. 5 Net power outputs for the systems. 
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Fig. 6 Turbine power output for the systems. 
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Fig. 7 Circulating pump power consumption for the systems. 

3.3 Temperature matching and pinch points analysis 

As Fig.8 shows, temperature matching of ROFC and 
MOFC during heat addition process are better than 

BOFC. Recovering the part of heat of liquid after 
flashing increases the evaporator inlet temperatures of 
ROFC and MOFC, which decrease the heat transfer 
temperature difference between working fluid and 
geothermal source. Thus, the irreversible loss during 
heat addition process is decreased compared to BOFC.  

Furthermore, the pinch points of BOFCs happen in 
the end of heat addition, while that of ROFC and MOFC 
happen during the heat addition process as shown in 
Fig.8. Recovering the part of the heat of saturated liquid 
after flashing has resulted in change of locations of 
pinch points.  
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Fig. 8 Diagram of pinch points for the systems. 

4. CONCLUSIONS 
In this work, comparative thermodynamic performance 
of two kinds of modified OFCs that recover the heat of 
liquid after flashing are presented. The evaporation 
temperature of the systems BOFC, ROFC and MOFC 
using pentane as working fluid were optimized for 
maximum net power output at each condensation 
temperature. The results are as follow: 

(1). The optimal flash temperatures of ROFC and 
MOFC are greatly decreased compared to 
BOFC. Because the optimal flash temperatures 
of ROFC and MOFC are limited by reinjection 
temperature. 

(2). Recovering the heat of liquid after flashing can 
decrease the optimal condensation 
temperatures of the systems and improve 
system performance. 

(3). Recovering the part of heat of liquid after 
flashing significantly increases evaporator inlet 
temperatures for ROFC and MOFC, which 
decreases heat transfer temperature 
difference between working fluid and source 
and decreases irreversible loss.  
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(4). Recovering the part of heat of liquid after 
flashing has led to change of positions of pinch 
points. 
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