# **EFFECT OF INJECTING N2/H2 ON METHANE HYDRATE DECOMPOSITION**

Jinrong Zhong<sup>1</sup>, Yifei Sun<sup>1</sup>, Yan Xie<sup>1</sup>, Changyu Sun<sup>1</sup>, Guangjin Chen<sup>1\*</sup>

1 State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, China.

#### ABSTRACT

Injections of pressurized carbon dioxide in natural gas hydrates have attracted a number of attentions because it can simultaneously serve as a means of methane gas exploitation and greenhouse gas sequestration. It has been found that gas recovery could be significantly enhanced by adding small molecules gases such as nitrogen or hydrogen into injected gas mixture. In this work, the Raman spectroscopy, gas chromatography and charge coupled device were used to study the effect of injecting small molecule gases on the methane hydrate decomposition.

**Keywords:** Gas hydrates exploitation, decomposition, nitrogen, hydrogen.

#### 1. INTRODUCTION

Gas hydrate is one of the backup energy resources which have raised wide attention [1]. This ice-like solid resource is distributed widely in all over the world, mainly in the seabed and permafrost zone. Many institutes are making substantial efforts in gas hydrate exploitation.  $CH_4$ - $CO_2$  replacement is a promising hydrate exploitation approach, because it could not only serve as a mean of continuously exploit clean gases, but also achieve the purpose of burying greenhouse gases [2]. This methane production approach could provide a stable reservoir for  $CO_2$ sequestration in the deep see floor or permafrost zone, and avoid geologic hazards caused by the collapse of hydrate.

The exchange process between  $CO_2$  and  $CH_4$ hydrate has been studied in numerous laboratory experiments and computer simulations [3]. Many studied have confirmed the truth that the  $CH_4$  recovery could be significantly improved by adding small molecules gases such as N<sub>2</sub> to injected  $CO_2$  gas [4-6]. Sun et al. proposed a combined exploitation technology by integrating  $CO_2/H_2$  injection and  $CH_4$  production with in situ steam reformation of  $CH_4$ , in which the involved separation of CO2/H2 is much easier than that of  $CH_4/N_2$  [7, 8]. Waage et al. studied the diffusion of gas mixtures in the sI hydrate using molecules simulation techniques [9]. They suggested that using a mixture of  $CO_2/H_2$  as injection gases could boost the bulk diffusivities of both  $CH_4$  and  $CO_2$  in sI hydrate.

Precious studies have focused on the effects of injecting  $CO_2$ -containing mixtures on methane hydrate decomposition. However, few papers have reported on the roles of small molecular gases in the decomposition of methane hydrates. In this work, Raman spectroscopy and charge coupled device (CCD) were used to compare the effects of pure depressurization process and depressurization after  $H_2/N_2$  injection on methane hydrate decomposition. At the same time, the change of gas composition in the high pressure optical cell



Fig. 1 Schematic of HPOC

(HPOC) was analyzed by gas chromatography.

#### 2. EXPERIMETNAL SECTION

#### 2.1 Material and methods

 $CH_4$ ,  $N_2$  and  $H_2$  gas with a mole fraction purity of 99.99 % were both supplied by the Beijing Haipu Gas Company. LTD. The deionized water used was produced

Selection and peer-review under responsibility of the scientific committee of the 11th Int. Conf. on Applied Energy (ICAE2019). Copyright © 2019 ICAE

by a water distillation unit from Shanghai Yarong Biochemistry Instrument Factory.

Fig. 2 shows the schematic of experimental apparatus used in the work. The HPOC shows in the fig. 1 have been provided in our previous work [10]. A JYB



Fig. 2 Schematic graph of experimental apparatus includes:1  $CH_4$  cylinder, 2 injection gas cylinders, 3 HPOC, 4 water bath, 5 production gas cylinder, 6 computer, 7 Raman laser, 8 CCD.

pressure transducer (±0.02 MPa) installed on the gas inlet line was used to measure the pressure in the cell. A HORIBA XploRA Raman system equipped with a 1800 grooves·mm-1 grating and 20x microscope objective. A 532 nm wavelength laser, with excitation power of 20 mW, was focused on a fixed middle spot on the hydrate surface in all experiments, and the focused diameter was approximately 5  $\mu$ m. The spectral resolution was 1 cm-1. The decomposition process was recorded by CCD. And the production gas was analyzed by the gas chromatography.

#### 2.2 Experimental procedure

The procedure for hydrate formation was similar to that used in our previous work [10]. When the  $CH_4$ hydrate sample was formed, the small molecule gases  $N_2/H_2$  was slowly pressed into the HPOC from the injection gas cylinder until the experimental pressure was reached. The Raman spectra of the hydrate sample surface were measured at this time to observe whether the small molecule gases entered the methane hydrate cages. After gas injection, the pressure in the reactor would drop slightly. When the pressure in the HPOC was stable, slowly decrease the pressure until the methane hydrate began to decompose. The process of hydrate decomposition was recorded by CCD. The realtime temperature and pressure data of the sampleforming chamber were collected using a monitor and control generated system.

#### 2.3 Results

2.3.1 Depressurization



Fig. 3 Changes of pressure and H<sub>2</sub> content with time during depressurization

The CH<sub>4</sub> hydrate was formed at 4560 KPa and 275.15 K. H<sub>2</sub> was injected into the HPOC to 10080 KPa (CH<sub>4</sub>:H<sub>2</sub> = 1:1.2). After 3 days, the pressure in HPOC was stable at 9800 KPa. Thereafter, the pressure in the HPOC was slowly decreased, and the production gas components were measured by gas chromatography.

The changes of pressure and H<sub>2</sub> content with time during the depressurization is shown in Fig. 3. At the initial stage of the depressurization, the H<sub>2</sub> content was much lower than the initial value. With the process of depressurization, the H<sub>2</sub> content in production gas increased gradually. When the CH<sub>4</sub> hydrate began to decompose, the depressurization was stopped. The final value of H<sub>2</sub> content was slightly lower than the initial value. It could be concluded that at the stage of injection H<sub>2</sub>, the small molecule gas was absorbed by CH<sub>4</sub> hydrate, which caused the pressure decreased in the HPOC. In the process of depressurization, the small molecule gas escaped from the hydrate layer in the result from the main gas phase pressure gradually decreasing. The content of small molecule gas in the production gas increased.

As shown in Fig. 4, the peaks centered at 4130 cm<sup>-1</sup> which corresponding to H-H stretching frequency in hydrate cages hadn't been measured, while the peaks centered at 4160 cm<sup>-1</sup> which corresponding to H-H stretching frequency in gas phase had been measured. It meant that H<sub>2</sub> didn't enter the cages to form hydrate, while diffused in the form of gases in CH<sub>4</sub> hydrate.



Fig. 4 Raman spectrum of H<sub>2</sub> in CH<sub>4</sub> hydrate

#### 2.3.2 Decomposition



Fig. 5 The process of hydrate decomposition

As shown in Fig. 5, during the process of  $H_2$  injection-depressurization, the part of hydrate which contacted with water decomposes first. During the decomposition, bubbles began to appear at the bottom of hydrate, as shown in Fig. 5(b). The Raman spectrum of bubbles is shown in Fig. 6, the bubbles contained large amounts of  $CH_4$  and  $H_2$  gas. The reason for this phenomenon is that the heat transfer coefficient at the bottom of the HPOC was large than other positions due to a part of water that wasn't converted into hydrate remained at the bottom of the HPOC. This means that the heat absorbed by the decomposition of this part of hydrate would soon be compensated.



Fig. 6 Raman spectrum of bubbles

Different content of small molecule gases were injected into the HPOC. The decomposition pressures of different CH<sub>4</sub> content during the depressurization are shown in Fig. 7. For the CH<sub>4</sub> hydrates injected with different content of H<sub>2</sub>, the higher the H<sub>2</sub> content, the lower the proportion of CH<sub>4</sub> in the HPOC, and the higher the decomposition pressure of CH<sub>4</sub> hydrate during depressurization. Meanwhile, the experiments of N<sub>2</sub> injection had the same trend.

Comparing the experiments of injection different types of small molecule gases, it was found that the decomposition pressures of  $H_2$ -injection were higher than  $N_2$ -injection. The diffusion process of  $H_2$  and  $N_2$  in CH<sub>4</sub> hydrate was measured by Raman spectroscopy, it was found that the diffusion factor of  $H_2$  was larger than that of  $N_2$ .



Fig. 7 Decomposition pressure of different CH<sub>4</sub> content

#### 2.4 Discussion

In this work, the decomposition pressures of  $CH_4$  hydrates which injected small molecule gases were found to be higher than that of  $CH_4$  hydrate undergone

the pure depressurization. Combining the changes of the small molecule gas content during the depressurization, it could be deduced that  $CH_4$  hydrate absorbs a certain amount of small gas molecules, which resulted in a part of  $CH_4$  hydrate located in the gas phase environment that the proportion of small molecule gases were higher than that in the main gas phase. As a result, the partial pressure of  $CH_4$  in local hydrate reached the equilibrium pressure before that in main gas phase. Therefore, the decomposition pressures of hydrates which undergone injectiondepressurization process were higher than pure depressurization.

## 2.5 Conclusions

Injection of small molecule gases such as  $H_2$  or  $N_2$  could promote the decomposition and increase the decomposition pressure of hydrate. Because the diffusion factor of  $H_2$  in  $CH_4$  hydrate is larger than that of  $N_2$ , the amount of  $H_2$  absorbed in the hydrate is larger than  $N_2$ , so the promotion of  $H_2$  to hydrate decomposition is stronger than  $N_2$ .

# ACKNOWLEDGEMENT

This work was financially supported by the National Natural Science Foundation of China (Nos. 21636009, 51576209, 51676207) and the National Key Research and Development Program of China (Nos. 2016YFC0304003, 2017YFC0307302).

## REFERENCE

[1] Chong ZR, Hern S, Yang B, Babu P, Linga P, Li XS. Review of natural gas hydrates as an energy resource: Prospects and challenges. Appl Energy 2016,162:1633-52.

[2] Bai DS, Zhang XR, Chen GJ Wanga W. Replacement mechanism of methane hydrate with carbon dioxide from microsecond molecular dynamics simulations. Energ Environ Sci 2012,5:7033-41.

[3] Falenty A, Qin J, Salamatin AN, Yang L, Kuhs WF. Fluid Composition and Kinetics of the in Situ Replacement in CH4–CO2 Hydrate System. J Phys Chem C 2016,120:27159-172.

[4] Park Y, Kim DY, Lee JW, Huh DG, Park KP, Lee J, Lee H. Sequestering carbon dioxide into complex structures of naturally occurring gas hydrates. PNAS 2006,103(34):12690-94.

[5] Koh DY, Ahn YH, Kang H, Park S, Lee JY. One-Dimensional Productivity Assessment for On-Field Methane Hydrate Production Using CO2/N2 Mixture Gas. AlChE 2015,61(3):1004-14. [6] Kang H, Koh DY, Lee H. Nondestructive natural gas hydrate recovery driven by air and carbon dioxide. Sci Rep 2014,4:6616.

[7] Sun YF, Zhong JR, Li R, Zhu T, Cao XY, Chen GJ, Wang XH, Yang LY, Sun CY. Natural gas hydrate exploitation by CO2/H2 continuous Injection-Production mode. Appl Energy 2018,226:10-21.

[8] Sun YF, Wang YF, Zhong JR, Li WZ, Li R, Cao BJ, Kan JY, Sun CY, Chen GJ. Gas hydrate exploitation using CO2/H2 mixture gas by semi-continuous injection-production mode. Appl Energy 2019,240:215-25.

[9] Waage MH, Trinh TT, van Erp TS. Diffusion of gas mixtures in the sl hydrate structure. J Chem Phys 2018,148:214701.

[10] Zhong JR, Zeng XY, Zhou FH, Ran QD, Sun CY, Zhong RQ, Yang LY, Chen GJ, Koh CA. Self-preservation and structural transition of gas hydrates during dissociation below the ice point: an in situ study using Raman spectroscopy. Sci. Rep. 2016;6:38855.