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ABSTRACT: A 2D filter is proposed for battery 
incremental capacity curve filtering in a cyclic aging test. 
The filter works in two directions, namely, from time to 
time and from batch (cycle) to batch. In details, a simple 
low-pass filter is applied in the batch direction, and a 
bias-corrected Gaussian filter is applied in the time 
direction. Experimental results show that the root-mean-
square-error of the proposed method is 20% lower than 
the neural-network-based benchmarking algorithm. 
Over-fitting and under-fitting could also be resolved. 
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1. INTRODUCTION 
The battery aging is inevitable during applications. 

This will lead to a decrease in capacity, increase in 
internal resistance, and in some extreme cases, safety 
problems [1]. Therefore, properly estimating the battery 
state of health is important for battery use, 
maintenance, and optimization. 

Battery state of health can be obtained by 
estimating the battery capacity [2], calculating the 
battery resistance [3], extracting the features from the 
voltage curve [4], and data-driven methods [5]. However, 
the state of charge (SOC) is required when calculating the 
battery capacity, and the SOC estimation accuracy could 
be low if the battery degradation is uncertain [6]. 
Resistance can be influenced by factors such as SOC, 
state of health (SOH), temperature, and the amplitude 
and frequency of the excitation signal [3]. Decoupling 
them could be difficult. The features extracted from the 
voltage curve usually lacks electrochemical explanations  
[4], and data-driven methods require a considerable 
amount of data for training [5]. 

Using incremental capacity analysis (ICA) to 
estimate the SOH is an attractive alternative. First, this 
curve has electrochemical explanations [7]. Second, the 
features extracted from the IC curve could have a linear 
relationship with the battery SOH [8], while the battery 
itself is a highly nonlinear system. In general, the direct 
IC value can be calculated from (1) in a constant current 
process: 
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where Q  stands for the capacity that could be 
calculated by Ah-counting method, and V  is the 
measured battery terminal voltage. 

It can be seen from Eq. (1) that the IC value is very 
sensitive to voltage measurement noise. Therefore, the 
filtering technique could directly influence the SOH 
estimate. As a response, different filters have been 
proposed. For instance, these filters include moving 
average filters (MA) [9], Gaussian moving average filters 
(GMA) [10], improved center least squares [11] and 
support vector machine [12]. It should be pointed out 
that the IC curves are usually treated as a measured 
signal, rather than a state underestimation in these 
methods. However, the IC value has a clear relationship 
with voltage. Second, the filtering result of the 
averaging-based filters (e.g., MA, GMA, or least-square 
based curve fitting tools) is biased if large quantization 
noise exists (explained in Section 3). 

To overcome the drawback of the existing ICA 
filtering method, a 2D filter featured by a two-direction 
filtering strategy is proposed. In details, a simple low-
pass filter is applied in the batch (cycle to cycle) direction, 
and a bias-corrected Gaussian filter is applied in the time 
direction. The effectiveness of the proposed filter is 



 2 Copyright © 2019 ICAE 

experimentally verified. It is also compared with a 
neural-network-based curve fitting tool. 

2. EXPERIMENTAL & SIMULATION SETTINGS 
The photo of our testing platform is shown in Figure 

1-(a). The UPower battery testing system is utilized. Its 
measurement range is 0~5V for voltage, and -10~10A for 
current. The accuracy of the measurement is ±0.05%; 
the resolution of the measurement is 1mV and 1mA for 
voltage and current, respectively. The experiment is 
carried out in room temperature of about 25 ℃. An FST-
2500 battery (rated capacity: 2500mAh) is selected for 
the cyclic aging test. The constant current-constant-
voltage profile is used for charging, while the constant-
current profile is used for discharging. The current rate is 
0.2C in the constant current phase. The cut-off voltage is 
4.2V for charging, 2.75V for discharging. The cut-off 
current in the constant voltage phase is 0.05C. 

 
Figure 1. (a): Experimental platform; (b): Comparison between 
the noise-polluted, best available, and referenced IC curve; (c): 
Illustration of 2D filter, the yellow arrow stands for the batch-
wise filtering; (d): Graphical illustration of a Gaussian window. 

In the simulations, we assume our voltage 
measurement contains a system noise of [-3, 3] mV and 
a quantization noise of 5mV. A system noise of [-3, 3] mA 
and a quantization noise of 1mA are also added to the 
current measurement. These signals are termed as 
“noise-polluted” signals. The battery voltage/current 
measured by our experimental platform, on the other 
hand, are termed as “best available” measurements. In 
the following discussions, we use Eq. (1) with 360IN =  
to calculate the IC curve for the noise-polluted and the 
best available cases. The referenced IC curve is obtained 
by fitting the best available result with a three-layer 
back-propagation neural network with 10 hidden 
neurons (denoted as 1-10-1 neural network). An 
illustration of these three IC values is provided in Figure 

1-(b). Based on the fact that the battery charging is 
usually carried out in a relatively stable environment 
with constant currents, the IC curve will be extracted 
using only the data collected in the constant current 
charging phase.  

3. METHODOLOGY 

3.1 Concepts, symbols, and terminologies. 

The key feature of the 2D filter is that the filtering is 
carried out in two directions, as shown in Figure 1-(c), 
where a batch is defined as a charging-discharging cycle. 
The subscript s  is selected to denote the batch 
number. In batch s  sampling time k , the noise-
polluted voltage ( ( )sV k ) and current ( ( )sI k ) can be 
obtained. Therefore, the noise-polluted IC value can be 
directly calculated following (1), and ( )sic k  is utilized 
to denote this direct IC value. 

Due to the battery aging, the charging time of each 
cycle could be different. However, a 2D filter requires the 
signal under filtering having the same length. In this 
concern, the IC value is modeled as a lookup function of 
the voltage with a resolution of 1mV, denoted as ( )z V . 
This follows the fact that the voltage operating range of 
a battery (denoted as ( : )V V ) remains the same during 
the cyclic aging test. 

3.2 The 2D filtering algorithm 

Due to the limited paper length, we first summarize 
the proposed algorithm in Table 1 and then explain each 
equation step by step. 

The first step of the proposed 2D filter is to provide 
a batch-wise initialization for 0ẑ . The initialization could 
be done by obtaining a referenced IC curve in the lab or 
set 0ˆ ( : ) 0z V V = Ω > . Then, in Eq. (2), the IC curve 
extracted from the previous batch is used to initialize the 
IC filtering result of the current batch. This step provides 
low-pass batch-wise filtering. It should be noted that the 
IC curve usually changes slowly in the batch direction, as 
shown in Figure 1-(c). In addition to the batch-wise 
initialization, the initial battery voltage in each batch, 
ˆ (1)sV , should also be specified. 

For each sampling time k  in the batch s , an 
observer is required for battery voltage filtering, because 
the resolution of the voltage measurement (5mV) is 
lower than the resolution of the IC-voltage look-up table 
(1mV). A Luenberger observer shown in Eq. (3) and (4) 
is applied in this paper, where 1L  is the gain of the 
Luenberger observer, and [ ]⋅  is the rounding function. 

Table 1. Proposed 2D filter. 
Method  
Initialize 0ẑ   
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end for  
end for  

end for  
Next, a Gaussian type moving average updater is 

developed, as described in (5). In this equation, ( )Gau ⋅  
is the value of the Gaussian window, whose length is 
2 1pN⋅ + . An illustration of the Gaussian window with 

15pN =  is provided in Figure 1-(d). 2L  is the feedback 
gain of the updater. The ( )sic k  in the denominator is 
designed to compensate the bias introduced by 1/ V∆ .  
In details, when taking lots of measurements for noise-
polluted V∆ , the true value can be approximated by the 
following equation: 

 { } (1 )E V V Vα α∆ = ∆ + − ∆         (6) 

where ⋅    is the round-down function, ⋅    is the 
round-up function, and α  is the frequency that the 
measurement result after quantization is V∆   . 
However, when calculating the direct IC value, we need 
to inverse the V∆ , and we have: 
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The right-hand side of (7) is the weighted summation of 
direct calculated noise-polluted IC value. The inequality 
means the mathematical expectation of 

( )( )ˆˆ( ) ( )s s sic k z V k −    in (5) a is not zero, and a state 

estimator whose gain is 2 ( )L Gau j⋅  is biased. However, 
when 1/ ( )sic k  is added to the observer, we have: 
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This implies that the proposed observer is unbiased. 
It should be noted that the above derivation ignores 

the influence of the current measurement noise, 
because the Q∆  is in the numerator in (1), and the 
side effect of the noise is relatively small compared with 
that of V∆ , which is in the denominator. 

3.3 Benchmarking algorithm 

In the benchmarking algorithm, a 1-10-1 size back 
propagational neural network is used to fit the 
relationship between the noise-polluted voltage the 
noise-polluted direct IC value. 

4. EXPERIMENTAL RESULT 
In the experiment, 25pN = , 0ˆ ( : ) 2z V V = Ω = , and 

1 2 0.03L L= =  are selected. The results of the proposed 
and the benchmarking algorithms are shown in Figure 2, 
Figure 3, and Table 2. From Figure 2-(a), the filtered IC 
value can converge within 20 batches. From Figure 2-
(b)~(d), the proposed filter can track the referenced 
result accurately, even if the shape of the IC curve could 
change significantly over time. Quantitively, the root-
mean-square-error (RMSE) of the proposed method is 
reduced by more than 20% compared with the 
benchmarking algorithms. From Figure 3, the IC value of 
the benchmarking algorithm is slightly higher than the 
referenced value. The reason is that the neural network 
fitting is optimized using the sum squared error function. 
In other words, the benchmark algorithm tends to 
average the noise-polluted signal. As indicated in (7), 
the averaged result is biased. Further, from Figure 3-(a), 
the proposed method can avoid the over-fitting (3400s) 
and under-fitting problem (4100s) of the benchmarking 
algorithm. 

5. CONCLUSIONS 
In this paper, a 2D filter is proposed to extract the 

battery incremental capacity curve from the noise-
polluted measurements. A low-pass filter in the batch-
direction and a Gaussian filter in the time-direction are 
combined. The novelties of the proposed method arise 
from two aspects: first, the 2D filter could use the batch-
wise information to enhance the quality of the filtering 
further. Second, the bias introduced by the quantization 
noise could be corrected through the proposed time-
wise filter. Experimental results show that the batch-
wise filter could converge within 20 batches, and the 
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root-mean-square-error of the proposed algorithm is 
20% lower than that of the benchmarking algorithm. This 
filtering technique paves the way to the study of the 
battery aging. In the future, the case when batteries are 
not fully charged or discharged will be studied. 

 
Figure 2. (a): The proposed filtering of the first 20 batches; (b): 
The filtering result of batch 100; (c): The filtering result of batch 
200; (d): The filtering result of batch 300. 

 
Figure 3. (a): The filtering result of batch 100; (b): The filtering 
result of batch 300. 
Table 2. RMSE of the proposed and benchmarking algorithms 

Batch 100 200 300 
Benchmark 0.28 0.27 0.18 
Proposed 0.18 0.21 0.13 
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