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ABSTRACT 
   The holistic optimization of district cooling systems is 
a computationally intensive undertaking, owing to the 
sheer number of conflicting decision variables and non-
convex nature of the problem. This is the primary reason 
which inhibits the real-time deployment of optimization 
algorithms for the operations of district cooling systems. 
To overcome this challenge, we adopt a model-based, 
decomposed approach involving the concurrent use of 
reinforcement learning and mixed integer linear program 
to holistically optimize the thermal and physical 
interactions while still capturing the tight coupling 
between the components of the system. Resolution 
speed and solution accuracy are paramount for a real-
time optimization algorithm thus, the critical advantage 
of the proposed approach is two-fold – the mixed integer 
linear program drastically reduces the action space of the 
reinforcement learning problem, promoting accuracy 
and when trained, the agent neural network can then 
rapidly determine the optimal values of the remaining 
actions, improving resolution speed. 
   The current work makes the two ensuing vital 
contributions: (1) we introduced a decomposed 
optimization approach with resolution speeds which are 
compatible with real-time deployment, (2) through the 
application on a real test-case, we compare both the 
resolution time and solution quality against an approach 
used in our previous work, which deployed the genetic 
algorithm instead of a reinforcement learner. Results 
indicate that the impact on solution quality is below 
7.52%, thereby, validating the feasibility of the proposed 
approach. 

Keywords: reinforcement learning, district cooling, 
energy efficiency, cyber-physical systems, holistic 
optimization, mixed integer linear program.  
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difference 
neural network error 
percentage 
error of the neural network 
actor neural network 
critic neural network 
electricity consumption (𝑘𝑊ℎ) 
volume flowrate (𝑚3/ℎ) 
mean  
normal distribution 
standard deviation  
pump 
temperature (𝐾) 
cooling demand (𝑘𝑊ℎ) 
input data into the neural network 

Superscripts  

𝑖𝑛  
𝑜𝑢𝑡  

flows into the unit 
flow out of the unit 

Subscripts  
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𝑐𝑝  
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customer 
chiller 
common pipe 
condenser side of the chiller  
cooling tower unit 
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𝐷𝐶𝑆  
𝑑𝑖𝑠𝑡_𝑛𝑤𝑘  
𝑒𝑣𝑎𝑝  
𝑠𝑒𝑙  
𝑠𝑦𝑠  
𝑖, 𝑗, 1, 2, 3 …  

district cooling system 
distribution network 
evaporator network 
selected pump 
entire network system 
numerical labels 

1. INTRODUCTION 
   Space cooling, especially in the tropics account for up 
to 40% of energy demand [1]. District cooling systems 
(DCS) represent a potentially more efficient means of 
fulfilling this demand [2]. Therefore, they are increasingly 
becoming commonplace in newer urban developments 
[3]. However, the actual performance is quite uncertain 
due to the inevitable deviation between design and 
operating conditions [4]. Oversizing of DCS, due to erring 
on the side of caution often results in the gross under-
utilization of equipment such as chillers, impacting the 
efficiency of the overall system very negatively [5, 6].  
   Inefficiency is further exacerbated by control 
strategies which are either predefined or seek only to 
optimize the performance of chillers [7]. These measures 
disregard the cascading effect on the system, impeding 
the ability of the DCS to respond well under unfavorable 
load conditions. Thus, this paper focuses on introducing 
a real-time optimization approach which not only 
thoroughly explores the solution space mapped by 
tuneable variables in a DCS, i.e., optimizes the system 
holistically, but additionally resolves swiftly enough such 
that it is compatible with deployment in real-time. The 
approach discussed in this paper is an improvement to 
the hierarchical optimization framework which we 
previously introduced [8].  

1.1 Prior work 

   Reinforcement learning (RL) is a generic machine 
learning framework which involves an agent taking 
actions in an environment and thereby earning a reward 
for it. The goal of the agent is to maximize the cumulative 
reward from the environment by iteratively improving 
the actions taken. The successful deployment of RL in 
playing games (Go [9], Atari [10]) and image recognition 
[11] marks the most significant progress in recent 
history. Despite the progress, it is essential to note that 
most of these work deal with discrete state and action 
spaces which is not directly compatible with those 
requiring continuous state and action spaces [12]. Naïve 
discretization of the state or action space leads to the 
curse of dimensionality makes solving intractable. Thus, 
a class of RL algorithms known as deterministic policy 
gradients (DPG) has been introduced [13]. 

   As a technique for optimal control, RL is rapidly 
gaining traction in the closely related field of building 
energy control [14, 15]. Examples of such application 
include the optimization of energy performance or 
operating cost in heating ventilating and cooling (HVAC) 
systems, domestic hot water (DHW) and data center 
cooling, through the manipulation of temperature 
setpoints. Since these problems mainly involve 
continuous state and action spaces, deterministic 
methods have been employed [16, 15]. These 
implementations typically use end-to-end model-free 
approaches which only deal with the optimization of a 
small set of actions (decision variables). There is however 
no indication that the optimization of the action space 
will yield optimal performance of the overall system. 
Training stability and convergence are other major issues 
which plague the performance of RL in these domains; 
hence techniques such as recurrent neural networks, 
experience replays, pretraining the neural networks with 
copious buffers of offline traces and guidance through 
expert defined policies were some of the measures 
adopted mitigate these issues.  

1.2 Objectives and contributions 

Holistic optimization of DCS itself presents a 
challenging task as a myriad of decision variables must 
be simultaneously optimized while respecting the tight 
coupling between the components of the system and 
non-linearities in the governing equations.  
   First, we chose appropriate models for representing 
each component of the DCS and calibrated them using 
raw data. Subsequently, these models were abstracted 
so that the resulting optimization problem could be 
solved using the combination of RL and mixed integer 
linear program (MILP). The MILP drastically reduces the 
action space of the RL problem, promoting convergence 
when training the neural network.  
   For illustrative purposes, we applied this approach to 
a test-case based on an existing DCS in Europe. Results 
generated were compared against an existing framework 
involving the combination of the genetic algorithm (GA) 
and MILP [8]. For the validating cooling demand scenario 
defined, results indicate that there is only up to 7.52% 
difference in the objective function while realizing a 
vastly significant resolution speed for real-time 
deployment.  
   Our proposed real-time optimization approach, its 
subsequent application on a test-case and validation 
against our previous approach are the two vital 
contributions of this paper.     



 3 Copyright © 2019 ICAE 

1.3 Organization of the paper  

   The next section introduces our RL-MILP approach by 
applying it on a test-case. Section 3 and 4 presents and 
analyzes the results of the test-case respectively, while 
Section 5 concludes our findings and discuss possible 
improvements for future work.  

2. FORMULATION OF RL-MILP REAL-TIME 
OPTIMIZATION PROBLEM  

   The discussion in this section will take the following 
shape – first, we define the test-case, then discuss our 
previous work in brief, before concluding with our 
implementation of RL onto the test-case. The discussion 
of our previous work is essential as it forms the basis for 
our current work.  

2.1 Test-case description 

   The test-case (Figure 1) presented in this sub-section 
is based on a functioning DCS located in Europe. The DCS 
of interest comprises of a single central station housing 
three water cooled chillers and cooling towers which 
serve four customers of different load profiles. As the 
DCS was overprovisioned, it is plagued by the infamous 
low 𝛥T syndrome, degrading its overall efficiency.  

   The objective of our work is to reduce the electricity 

consumption (�̇�𝐷𝐶𝑆) of the DCS by holistically optimizing 
operations at the hourly level. This involves determining 
the optimal values of all the variables listed in Figure 1 

for a given combination of cooling demand (�̇�𝑑,𝑐,𝑖) and 

ambient temperatures (𝑇𝑤𝑏). We did not include cooling 
towers due to limitations in the dataset we had for 
calibrating the models.  
   Cooling demand for a single representative day will 
be used to both validate the performance of our current 
proposed against our previous approach. The quality of 
the optimal objective function and resolution speed will 
be the metric for measuring the performance of both 
methods.    

2.2 Previous work: GA-MILP approach 

   In our previous work, after choosing the appropriate 
models, we decomposed the optimization problem into 
two-levels – master (GA) and a slave (MILP). Doing so, 
increased the likelihood of converging to the globally 
optimal solution as the prowess of MILP solvers can be 
leveraged. This approach is summarized in Figure 2 and 
more details can be found in [8]. 
   When we formulated the test-case, we found that 

only two decision variables ( �̇�𝑠𝑦𝑠, 𝑇𝑑𝑖𝑠𝑡_𝑛𝑤𝑘
𝑜𝑢𝑡 ) were 

required to be optimized by the GA, whilst the rest could 
be adequately handled by the MILP. The main drawback 
of the GA-MILP approach is the numerous iterations in 
which the GA must go through just to determine the 
optimal values of two decision variables. A typical run of 
the MILP takes under 5 seconds to solve, which is 
considerably fast, since we are solving for the optimal 
values to be used over a period of an hour. Coupling it 

 

 
Figure 1: Schematic of DCS in the test-case 

 
 

Figure 2: Summary of our previous work: GA-MILP 
approach 
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with the GA in the manner shown in Figure 2 greatly 
retards the entire process. Should the relationship 

between �̇�𝑠𝑦𝑠 and 𝑇𝑑𝑖𝑠𝑡_𝑛𝑤𝑘
𝑜𝑢𝑡  to the optimal electricity 

consumption be determined offline, we could utilize this 
as a real-time optimization framework to aid the decision 
making process for operators of the DCS. This underpins 
the motivation for our next approach.  

2.3 RL-MILP approach 

   The first step toward utilizing RL is to formulate the 
problem as a Markov decision process (MDP), with the 
proper definition of the environment, reward, state and 
action spaces. With added assumption that the actions 
taken in each hourly time-step in the test-case is 
independent from the next, the optimization problem 
could be formulated as in the similar fashion as the 
classic multi-armed contextual bandit problem – the only 
difference being continuous state and action spaces [17]. 
Hence, we replaced the GA with our variant of the deep 
deterministic policy gradient (DDPG) algorithm [11], 
however, instead of a reward, we introduced a negative 
reward to discourage the agent from making poor 
choices. Without using the decomposition approach, the 
subsequent RL problem may be difficult to solve as the 
action space is too large for the state space. Table 1 
details our definition of the MDP.  

   We implemented the actor-critic method for our RL 
design. The actor intakes a state and outputs an action, 
and the critic evaluates the state and corresponding 
action from the actor. Figure 3 illustrates the 
implementation of our forward feed neural network 
architecture and Figure 4 summarizes our proposed RL-
MILP approach. For the actor neural network, we defined 
the final hidden layer to output four values – two mean 
(𝜇) and two sigma (𝜎) values which was then used with 
the normal distribution function to generate the values 
for the output layer. After which, we reduced the losses 
of our neural networks using the Adam optimizer, with 
learning rates of 0.001 and 0.0001 for the actor and critic 
network respectively [18]. Finally, Algorithm 1 details 
training procedure we used to update the weights for the 
neural networks. 

3. RESULTS AND DISCUSSION 
 

   In this section, we compare the results of holistic 
optimization of DCS operations using the GA-MILP and 
RL-MILP approach from two perspectives – solution 
quality and resolution speed.  

3.1 Solution quality  

   Figure 5 illustrates compares the �̇�𝐷𝐶𝑆  values 
generated for the validation data trace using the both 

 
Figure 4: Summary the RL-MILP approach 

𝑺𝒕𝒂𝒕𝒆  
𝑨𝒄𝒕𝒊𝒐𝒏  
𝑬𝒏𝒗𝒊𝒓𝒐𝒏𝒎𝒆𝒏𝒕  
𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆 𝒓𝒆𝒘𝒂𝒓𝒅   

𝑄𝑐,1−4, 𝑇𝑤𝑏 

ṁsys, Tdist_nwk
out   

𝑀𝐼𝐿𝑃 𝐹𝑜𝑟𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛  
𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (�̇�𝐷𝐶𝑆)   

 

Table 1: Definition of the MDP 

 
Figure 3: Neural network architectures 
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approaches against the base-case. After training the RL 
for 3000 episodes, we can already notice significant 
savings in electricity consumption as compared to the 
base-case. Although the GA-MILP approach generally 

performed better, we note that there exist scenarios 
such as in the 1st, 5th and 17th hour where the RL-MILP 

approach marginally outperformed the GA-MILP. One 
possible explanation for this could be due to the gradient 
descent optimizers advantage over the GA when 
searching for local optima. The converse is true 
especially in the 12th and 22nd hour where it is likely that 
the optimizer used to minimize the losses in the RL is 
unable to escape a local optimum.  
   Table 2 documents the percentage difference of 

�̇�𝐷𝐶𝑆 of the RL-MILP against the base-case and the GA-

MILP. The accuracy generally improves with the number 
of training episodes. Beyond 3000 episodes however, the 
performance on the validation data trace started to 
degrade. Overfitting to the training data trace could be a 
likely reason for this observation. Another possible 

explanation could pertain to the inability to fully capture 
the relationship between the states and actions within 
the current size and architecture of the neural networks. 
Where escaping local optima are concerned, off-policy 
methods could also be explored.  

3.2 Resolution speed  

   This where the primary benefit of the RL-MILP 
approach lies. The average resolution time to solve the 
MILP sub-problem is approximately 3 - 5s. The GA 
requires about 15 000 evaluations of the MILPs to 
converge for a single time-step of an hour. Despite only 
having undergone 3000 MILP evaluations, the absolute 
difference in electricity savings between the GA-MILP 
and RL-MILP approaches is only 7.52%.  
   Since the RL is trained offline, online performance 
will not be impeded, regardless of the number of training 
episodes it requires to converge – when properly trained, 
a single evaluation of the MILP is all that is required to 
deliver the optimal values of all the decision variables 
required to operate the DCS efficiently.   

4. CONCLUSION  
   We introduced an approach for the holistic 
optimization of the DCS operations using the 
combination of reinforcement learning and mixed 
integer linear program. Reinforcement learning can shift 
the majority of the heavy computation offline, vastly 
improving the feasibility of our proposed approach for 
real-time applications. When the reinforcement learner 
was trained, we could retrieve the close to optimum 
solutions almost instantly, a feat not achievable with our 
previous approach which utilized the combination of the 
genetic algorithm and mixed integer linear program. 
When the both methods were compared, only a mere 

Algorithm 1: Training algorithm for the actor-critic 
neural networks 

1. Collect the hourly state data over the period of 1 

month. The negative reward refers to �̇�𝐷𝐶𝑆 which 
is an output from the environment. 

2. Select 1 day outside the training data trace to be 
used for validation. 

3. Initialize neural networks 𝑎(𝑋𝑎|𝜃𝑎)  and 
𝑐(𝑋𝑐|𝜃𝑐 ) with weights 𝜃𝑎  and 𝜃𝑐  initialized 
using the Kaiming initialization scheme [19].  

4. for 𝑖 =  1, . . . , 𝑚𝑎𝑥 𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑠 do 
Compute 𝛿𝑐,𝑖 = (𝑐(𝑋𝑐,𝑖|𝜃

𝑐) − �̇�𝐷𝐶𝑆,𝑖 ) 

Update 𝜃𝑐  by miimizing 𝛿𝑐,𝑖
2 

Compute 𝛿𝑎,𝑖 = −log (𝒩 (𝑎(𝑋𝑎,𝑖|𝜃𝑎)))  ×  𝛿𝑐,𝑖  

Update 𝜃𝑎 by minimizing 𝛿𝑎,𝑖  

end for  

 
 

 
Figure 5: Plot of �̇�𝐷𝐶𝑆 (𝑘𝑊ℎ) for the base-case, MILP-

GA approach and RL-MILP (after 3000 episodes)  

Episodes 
Percentage difference 
(RL-MILP vs Base-case) 

Percentage difference 
(GA-MILP vs Base-case) 

1000 -3.92 

-34.36 
2000 -23.68 

3000 -26.84 

4000 -22.55 

 

Table 2: Comparison of difference in �̇�𝐷𝐶𝑆 (𝑘𝑊ℎ) 
between the base-case and MILP-GA approach over 

various RL-MILP training episodes 
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7.52% of electricity savings was forgone for an immense 
improvement in the resolution speed of the algorithm.  
   Accounting for stochasticity in cooling demand and 
the optimization capability of our reinforcement learner 
are listed as directions for our future work.   
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