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Abstract 
Hydrate distribution controls the properties of 

hydrate-bearing sediments. Few methods cannot be 
available to understand hydrate distribution 
characteristics macroscopically at present. Designing a 
large-scaled pressure vessel possessing five measuring 
positions, we investigated hydrate distributions through 
the features of resistances in quartz sands and excess 
water. The results show that gas and hydrate governed 
the characteristics of resistances during hydrate 
formation stage. Different increasing fluctuations of 
resistances can show hydrate distributions. In our 
experiment, hydrates were considered to mainly 
distribute in the middle of horizontal artificial sediments. 
The resistances of hydrate-bearing sediments may offer 
a reference to hydrate distributions. 
Keywords: resistance, hydrate formation, non-uniform 
distribution, excess-water 

1. Introduction 
At present, methane hydrate has been deemed as 

one of potential energy resources. Many researches and 
field tests have been conducted to achieve commercial 
production technologies for hydrate development. In 
these works, synthetic hydrate samples are widely used 
to investigate the properties of hydrate-bearing 
sediments such as permeability, thermal conductivity, 
and so on, which provides basic messages for numerical 
simulations. The process of hydrate formation by 
excess-water method in the laboratory is similar to the 

circumstance in actual hydrate reservoirs, so it is used 
widely. But using this method can lead to non-uniform 
distribution of hydrate in artificial sediments, which has 
been observed microscopically via X-ray computed 
tomography (CT) [1-5]. However, there are rarely 
reports about judging hydrate distribution from 
macro-scales. This situation brings about uncertainty to 
experiments. 

Resistivity, resistance, or impendence represents 
electrical properties of hydrate-bearing sediment. 
Although they are governed by ion concentrations, 
some other factors have been proven to affect electrical 
properties. No matter CO2 hydrate, CH4 hydrate, or THF 
hydrate in porous medium, with increasing temperature, 
bine concentration, and water content, resistivity or 
resistance would diminish [6-8]. Yet the correlation 
between hydrate saturation and resistivity or resistance 
seems unclear. As some literatures reported, the 
resistivity was not always increased when hydrate 
saturation increased in artificial hydrate specimens, 
owing to Oswald ripening [9-11]. On the other hand, 
these electrical properties were used to study hydrate 
formation and dissociation in artificial specimens. 
Resistant would increase during the formation, while it 
deceased dramatically in dissociation phase [12-15], 
due to ionic concentration changes. The “blockage” 
mechanism of hydrate was assumed as contribution to 
increasing resistivity in the formation stage. Under 
excess-water hydrate formation environment, hydrate 
in large pores and throats can be assumed as a key 



factor to affect the electrical properties during hydrate 
formation. In addition, gas would also hinder ions to 
flow, so gas also can be not negligible. These 
characteristics benefit us to judge the hydrate 
distribution. 

Hence, in order to understand hydrate distribution 
macroscopically, excess-water method was used to form 
hydrate with different saturations in a pressure vessel 
with different electrical measuring locations. The 
resistance changes were employed to study hydrate 
contents in different places during hydrate formation. 

2. Experiments 
2.1 Apparatus and materials 

Figure 1 is the schematic of apparatus employed 
to measure electrical features of methane 
hydrate-bearing porous media. The pressure vessel is 
a cylinder and capable of withstanding a maximum 
pressure of 33.0 MPa. The inner dimensions of the 
vessel are 100 mm in diameter and 700 mm in length. 
The internal bulk volume of it was measured as 5.701 
L through water injection. Twenty thermocouples are 
inserted in the vessel for temperature measurement 
during hydrate formation phase. The thermocouples 

are numbered from 1 to 20. The electrode 
encompasses two probes. The vertical and horizontal 
distances between them are 90 mm and 10mm, 
respectively. Five electrodes are arranged at a 
distance of 50 mm, 200 mm, 350 mm, 500 mm, and 
650 mm respectively from the left of the vessel. They 
are labeled as R1, R2, R3, R4, and R5. Two pressure 
transducers with maximum ranges of 40 MPa are 
fixed on inlet and outlet of the vessel, respectively. A 
gas tank with volume of 4.0 L is used to store 
methane of a certain pressure. In order to reduce the 
effect of temperature on measurements, a container 
with volume of 11.0 L is to provide cool water with a 
temperature needed for experiments. A data 
acquisition of Agilent logs data, and a computer 
records all data. 

In our experiments, quartz sand with 100-120 
mesh was chosen as porous media. Deionized water 
with a resistivity of 18.25 MΩ/cm was prepared by an 
ultrapure water meter. Methane gas with the purity 
of 99.99% was supplied by the Foshan Kody Gas 
Chemical industry, Co., Ltd., China. 

 
Figure 1 Experimental schematic of apparatus for resistance measurements 

2.2 Experimental process of Hydrate formation 
The excess-water method was used to prepare 

hydrate samples, and the experimental processes are 
as follows: (1) after filled with dry quartz sand, the 
pressure vessel was immersed into the temperature 
controlled water bath with 281.15 K. The back 
pressure valve was set in 13 MPa. Deionized water 
with 281.15 K was injected into the vessel with 
injection rate of 5 ml/min until a constant flow rate in 
the outlet. The porosity of quartz sand was measured 
at 48.24%. The pressure of vessel was remained this 

condition for about three hours. In this period, 
resistances were metered as a start point. When 
resistance values held steady, a relatively constant 
condition was achieved in the vessel. (2) The vent 
valve (Figure 1) was opened, and a predetermined 
amount of water was driven out by gas injection.  
During this period, gas should not be displaced out. 
After the water displacement finished, the vent valve 
was shut down. (3) The vessel was pressurized to a 
given value with methane gas and deionized water, 
respectively. (4) The system was maintained for a few 



days to allow the hydrate formation. The pressure, 
temperature, and resistance data were recorded at 60 

s time interval during hydrate formation phase. 

3. Results and discussion 
Figure 2 is the changing resistances in whole 

process of hydrate formation whose hydrate 
saturation is 15.50%. This process was divided into 
five stages. After the resistances of five positions had 
become steady at the stage 1, partly water was 
displaced out by gas injection repeatedly. During the 
stage 2, the increasing resistances in five positions 
were observed outstandingly. The gas gradually 
entered larger pores and throats and thus governed 
the changes of resistances. Afterwards, gas injection 
increased the pressure of the vessel from 11.75 MPa 
to 17.80 MPa at the stage 3. And the pressure of the 
vessel further varied from 17.80 MPa to 24.3 MPa 
through water injection. Since the time of both stages 
last shortly, there were a little changes in resistances 
of five measuring points. The gas and the water were 
regarded as key influencing factors in the stage 3 and 
4, respectively. At the stage 5, with deceasing 
pressure in the vessel, the gas in quartz sands was 
gradually forming hydrates. Before the first water 
injection, all measuring positions had tendencies 
featured with different increasing degrees. But when 
the water was added to the vessel in the first time, all 
of resistances scaled down. The residual gas was 

intended to synthetize more hydrates. However, the 
resistances in five positions almost had little changes 
after the second water injection was performed. This 
show that there were not much new formed hydrates 
causing the reduction of ion concentration in these 
five positions. Meanwhile, the second water injection 
had little effects on resistances of five positions, so 
the water may not be an important factor. The 
remaining gas and methane hydrate should control 
the features of resistances in the stage 5. 

Hydrate distributions related to local hydrate 
contents closely. This hydrate content can affect the 
changes of resistances in five positions. Therefore, 
these changes of resistances can be used to analyze 
hydrate distributions in the quartz sands. From the 
stage 5 in the Figure 2, compared with the measuring 
position R1 and R5, the position R2 to R4 possessed 
the larger increasing fluctuations of resistances. 
Hence, these places had more gas to form hydrates. 
And different measuring points had various local 
hydrate contents, though they are under the same 
hydrate saturation. In our experiment, hydrates were 
mainly distributed in the middle of the vessel. This 
indicates hydrate distributions were non-uniform via 
using excess-water method [16].
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Figure 2 Characteristics of the resistances in the process of hydrate formation (Sh=15.50%) 



4. Conclusions 
Electrical properties of hydrate-bearing quartz 

sand were measured and investigated during hydrate 
formation in this work.  

(1) The gas and the hydrate governed the 
characteristics of resistances in different measuring 
points during hydrate formation stage. 

(2) More hydrates would bring larger increasing 
fluctuations of resistances. 

(3) Hydrates were distributed non-uniformly in 
the vessel. 
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