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ABSTRACT 
In a power plant, combustion condition monitoring is 

essential for maintaining stable operations and 
operational safety. Therefore, it is crucial to develop an 
intelligent combustion condition monitoring method. 
Existing methods not only need a large quantity of 
labeled data but also lack of generalization ability for 
monitoring the new condition. Aiming these problems, 
the present study presents a novel approach combining 
denoising autoencoder (DAE) and generative adversarial 
network (GAN) to monitor combustion condition. With 
the aid of the learning mechanism of the GAN, the 
learning ability is improved to learn representative 
features. These learned features are then fed into the 
Gaussian process classifier (GPC) for condition 
identification. Furthermore, new conditions can 
correctly be classified by simply retraining the 
established GPC using a small amount of labeled data 
under the new conditions, rather than training from 
scratch. Experiments were performed on a gaseous 
combustor and results indicate that the proposed 
approach can extract representative features accurately 
and provides higher accuracy for condition identification 
such as 99.4% for original conditions and 99.5% for the 
new conditions. 
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1. INTRODUCTION 
Combustion condition monitoring is a vital part of 

advanced combustion control. Accurate identification of 
combustion condition is also crucial for detecting 
abnormal combustion state. Whereas the abnormal 

combustion state reduces combustion efficiency and 
increases pollutant emissions (e.g., NOx, SO2). Hence, it 
is crucial to develop an intelligent condition monitoring 
tool. A great deal of efforts has been devoted to this area 
[1-2]. Among them, soft-computing techniques 
combined with flame imaging and image processing has 
been attracted and received considerable attention for 
both laboratory and industrial-scale combustion test 
facilities. Generally, two different stages involved in 
combustion condition monitoring based on imaging and 
soft computing based techniques, i.e. feature extraction 
and then condition monitoring.  

Feature extraction is the most important step, which 
has been studied extensively. For instance, Sun et al. [3] 
extracted the HSI (Hue, Saturation, Intensity) 
characteristic parameters of heavy oil-fired images. 
These color features are further analyzed and utilized in 
the stage of process monitoring. Bai et al. [4] built a 
kernel support vector machine (SVM) classifier based on 
the principal component analysis (PCA) features. From 
the above studies, it can be concluded that the essential 
features of the combustion state are the key to achieve 
satisfactory monitoring performance. However, most 
traditional methods have two main deficiencies such as 
(i) feature extraction process requires prior knowledge of 
image processing as well as comprehensive knowledge 
of the specific problem, (ii) poor performance provided 
by most of the algorithms and cannot meet the 
requirement of the power plant engineers/operators.  

Clearly, it is a desire to develop a reliable technique 
that can utilize flame images to learn effective and 
robust features. Recently, deep learning neural network 
has received considerable attention in the combustion 
studies [5]. For example, Wang et al. [6] established a 
convolutional neural network (CNN) framework to 
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recognize the combustion state of the boiler furnace. 
However, an obvious problem with the deep learning 
network is that a large quantity of labeled data is needed, 
in practice which is difficult to achieve. 

This paper presents a novel approach for combustion 
condition monitoring that addresses the drawbacks of 
the existing methods. A combined denoising 
autoencoder and generative adversarial network (DAE-
GAN) is developed to extract representative features 
automatically from unlabeled flame images in an 
unsupervised manner. A Gaussian process classifier 
(GPC) is established to monitor combustion condition 
after supervised training with a few labeled data. After 
simply retraining established GPC, new conditions can be 
classified correctly by the proposed approach. 

2. METHODOLOGY 

2.1 Overall strategy 

The technical strategy of the proposed approach is 
shown in Fig. 1, which consists of feature extraction and 
condition monitoring. Mainly, it includes the following 
steps: 

Step 1. The flame images are acquired and sorted. 
Each image is resized into 256(H)×256(V) and normalized 
by its maximum value. 

Step 2. A feature learning network (DAE-GAN) is 
established and its parameters are initialized.  

Step 3. The generator and the discriminator of the 
DAE-GAN are iteratively optimized by adversarial 
machine learning for the unlabeled images. Basically, this 
is the unsupervised feature learning process. 

Step 4. In the supervised learning process, the 
features are extracted from labeled images by the 
trained DAE-GAN and then used to train the GPC. 

Step 5. After that combustion condition was 
identified out using the established GPC for the original 
dataset.  

Step 6. If a new condition occurs, the established GPC 
can be retrained with a few labeled images from the new 
condition. Then, the new condition can be identified by 
the retrained GPC. 

2.2 Feature extraction 

The autoencoder (AE) is a symmetrical neural 
network, which is composed of encoder and decoder. 
The input sample is mapped to the encode vector 
through the encoder. The encoded vector is then 
remapped to the output sample through the decoder. To 
minimize the reconstruction error between the input and 
the output samples, a representative encodes vector is 
obtained. However, the basic AE cannot guarantee 
strong learning ability as it can lead to an obvious 
solution that simply copies into the input sample [7].  

In order to extract sensitive features, a denoising 
autoencoder (DAE) is integrated into the basic AE, where 
the input samples of the DAE are corrupted by noise. The 
decoder reconstructs the encode vector to obtain 
sample free of noise. The mean square error (MSE) is 
commonly used as a loss function for the DAE, 

𝐿𝑧,𝑥 =
1

𝑀
∑ ‖𝑧𝑚 − 𝑥𝑚‖2𝑀

𝑖=1             (1) 
where 𝑀  represents the sample size; each input 

sample 𝑥𝑚 can be reconstructed to 𝑧𝑚 through DAE.  
In this study, the GAN is applied to further improve 

the expressive capacity of the DAE. The structure of the 
designed DAE-GAN is shown in Fig. 2, which includes a 
generator and a discriminator. The DAE is considered as 
the generator of the DAE-GAN. The input sample 𝑥 is 
corrupted into �̃�  through the stochastic mapping. 
Different types of corruption processes may be 
considered such as white Gaussian, salt-and-pepper and 
masking noises. Here, white Gaussian noise is used. The 
corrupted sample �̃�  is then mapped to the encode 
vector ℎ by the encoder. Finally, the encode vector ℎ 
is remapped to a reconstruction 𝑧 by the decoder. In the 

 
Fig 1 Overall strategy of combustion condition monitoring 
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encoder and discriminator, the convolutional filters with 
a size of 3×3 and a strider of 2 are used for feature 
learning. In the decoder, the feature mapping is first 
dimensionally extended through the up-sampling layer 
and then processed by the convolution filters with a size 
of 3×3 and a strider of 1. The Rectified Linear Unit (ReLU) 
is selected as the activation function of the hidden 
neurons, while the sigmoid function is only used in the 
output layer of the decoder and discriminator. 

In each training step of the DAE-GAN, the generator 
DAE produces some fake samples. The discriminator is 
trained by these fake samples mixed with a few true 
examples. Then the generator is rewarded for generating 
examples to fool the discriminator. Through the 
adversarial machine learning mechanism, the generator 
and discriminator continuously confront each other and 
optimize themselves until the Nash equilibrium is 
reached [8]. The objective function implements a min-
max adversarial game between generator (G) and 
discriminator (D), 
min

𝐺
max

𝐷
𝑉(𝐷, 𝐺) = 𝐸𝑥~𝑃𝑑𝑎𝑡𝑎(𝑥)[𝑙𝑜𝑔𝐷(𝑥)] + 

           𝐸�̃�~𝑃𝑔(�̃�) [𝑙𝑜𝑔 (1 − 𝐷(𝐺(�̃�)))]   (2) 

where 𝑃𝑑𝑎𝑡𝑎(𝑥)  and 𝑃𝑔(�̃�)  denote the prior 

distribution of input sample 𝑥 and corrupted sample �̃�; 
𝐷(∙)  is the output of discriminator D, where the 
activation function is sigmoid. 𝐺(�̃�)  is the output of 
generator G, which has the same dimension as 𝑥. Once 
the training process is completed, the generator DAE can 
well reconstruct the original input sample, so as to 
achieve the purpose of capturing the distribution of the 
input sample. 

2.3 Condition monitoring 

The GPC is established for combustion condition 
identification. The reason to use the GPC in this context 
stems is it has a genuine probabilistic model that can 

estimate the probability of each input sample belonging 
to each class [9]. Assuming that a data set 𝐷 = (𝑿, 𝒀), 
where  𝑿 = {𝑥𝑖|𝑖 = 1,2, … , 𝑚}  and 𝒀 = {𝑦𝑖 ∈
(−1,1)|𝑖 = 1,2, … , 𝑚} collect the inputs and class labels 
respectively. The GPC with a probit measurement model 
can be expressed as: 

𝑝(𝒀|𝑓(𝑿)) = 𝑝(𝑦𝑖|𝑓(𝑥𝑖)) = ∫ N(𝑧|0,1)
𝑦𝑖𝑓(𝑥𝑖)

−∞
𝑑𝑧 (3) 

where 𝑓(𝑿)~𝐺𝑃(0, 𝐾(𝑿, 𝑿′))a latent function; 𝐺𝑃 

is a Gaussian Process;  𝐾(𝑿, 𝑿′)  is the covariance 
function. Here, the Gaussian radial basis function (RBF) is 
chosen: 

𝐾(𝑿, 𝑿′) = 𝜎2exp (−
‖𝑿−𝑿′‖

2

2ℓ2 )           (4) 

where 𝜎2 denotes the signal variance; ℓ denotes 
the characteristic length-scale.  

3. DATA COLLECTION AND DESCRIPTION 

3.1 Data description 

Experiments were carried out on the laboratory-
scale combustion test rig. The flame images were 
captured by the high-speed monochrome camera with a 
resolution of 260×384 pixels at 1000 f/s (frames per 
second). Table 1 depicts the overview of the dataset 
obtained from seven different combustion conditions 
under the different air flow (AF) and fuel flow (FF) ratios. 
For each condition, 4000 images are collected.  

Table 1. Overview of the dataset. 

Dataset Condition 
FF 

(ml/min) 
AF 

(m3/min) 
Total 

images 

A 

1 500 0.5 4000 

2 500 1.0 4000 

3 500 1.5 4000 

4 500 2.0 4000 

5 500 2.5 4000 

B 
6 400 0.5 4000 

7 400 1.8 4000 

 
Fig 2 The structure of the designed DAE-GAN 
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Example flame images of the seven conditions are 
shown in Fig. 3. Although the flame appearance (size, 
brightness, structure, etc.) varied with the air-fuel ratios, 
it is difficult to distinguish the differences manually those 
appearances, which is impractical. Therefore, the 
proposed method is applied to monitor the combustion 
conditions.

 
(1)     (2)      (3)     (4)      (5)     (6)     (7) 

Fig 3 Example images of seven conditions 

In order to eliminate the influence of different image 
sizes and accelerate the convergence speed of the neural 
network, all chosen images are pre-processed. The 
process is as described above (step 1). The pre-processed 
dataset is divided into two parts: dataset A with five 
conditions considered as the original conditions and the 
remaining two conditions (dataset B) as the new 
conditions. 

Fig. 4 illustrates the overall structure of the dataset. 
80% of dataset A is selected to form the dataset A1, and 
the remaining 20% to form the dataset A2. Then, 94% of 
the dataset A1 is chosen as the dataset A3, while the 
remaining 6% as dataset A4. Similarly, 80% of dataset B 
is selected to form the dataset B1, and the remaining 
20% to form the dataset B2. Then, 6% labeled data of 
dataset B1 is chosen to form the dataset B3.  

 
Fig 4 Structure of the dataset 

3.2 Training process 

Without labeled information, dataset A3 is used to 
train the unsupervised DAE-GAN. In particular, the 
dataset A3 is also destroyed by white Gaussian noise 
(signal-to-noise ratio (SNR)) of 12 dB. All the iterative 
number of epochs is set to 60. All the weights of the DAE-
GAN are initialized by Gaussian distribution with a 
standard deviation of 0.02. The supervised GPC training 
is performed based on the labeled samples of the dataset 
A4. The dataset B3 is used to retrain the established GPC. 

4. RESULTS AND DISCUSSION 

4.1 Results 

The test trial was repeated 10 times to guarantee the 
reliability of the result. The testing accuracy under 
dataset A2 referred to R1, and a combination of datasets 
A2 and B2 referred to R2. As shown in Fig. 5, all the trials 
of R1 achieve >98.8% testing accuracy with an average of 
99.4%. The results demonstrate the effectiveness of the 
proposed method for combustion condition monitoring 
with a large number of unlabeled data and a small 
amount of labeled data. In addition, it can be seen that 
the average testing accuracy of R2 reaches 99.5%. It’s 
suggested that the proposed method performs well in in 
the monitoring of new conditions by simply retraining 
the established GPC, instead of training from scratch. 
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Fig 5 Overview of the testing accuracy 

To investigate the overall recognition of combustion 
conditions, a total of 1400 flame images (200 per 
condition) are randomly selected from dataset A2 and 
dataset B2 for testing. Fig. 6 illustrates the recognition 
results. As can be seen, although there is some false 
recognition, most of the samples can be recognized 
accurately with a success rate of up to 99.5%. 
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Fig 6 Condition recognition under dataset A2 and dataset B2 
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4.2 Discussion 

4.2.1 Comparison of monitoring performance with 
different levels of noise 

The robustness of the proposed approach is verified 
with different noise levels. The testing datasets (A2 and 
B2) is corrupted by different levels of white Gaussian 
noise with the SNR value of 36 to 6 dB and a step size of 
6. For each level of noise, 10 trials were carried out and 
the averaged result is listed in Table 2. The results show 
that the testing accuracies with the SNR of 36 and 30 dB 
are almost the same as those with no noise. While the 
SNR is 24 dB and 18 dB, the accuracies slightly decrease. 
Even if the SNR is 12 dB, the proposed approach can still 
achieve 92.1% testing accuracy of R1 and 94.1% testing 
accuracy of R2. With the further increase in noise level, 
the performance of this approach will be seriously 
degraded. In this case, noise isolation or other processing 
methods (such as wavelet transform) should be 
considered when the images are acquired and pre-
processed. Overall, this approach has a good anti-noise 
ability, which is useful for noisy data that usually capture 
in a harsh environment.  
Table 2. Testing accuracy under different SNRs. 

SNR 
(dB) 

No 
noise 

36 30 24 18 12 6 

R1 (%) 99.4 99.3 99.2 98.6 96.9 92.1 68.5 

R2 (%) 99.5 99.4 99.3 98.8 97.5 94.1 46.8 

4.2.2 Comparison of monitoring performance with 
different features of learning methods and classifiers 

A trial is also carried out to compare DAE-GAN 
monitoring performance with two deep learning 
methods (DAE and AE-GAN). Notably, the network 
structure of DAE is the same as the generator of DAE-
GAN, while AE-GAN is completely the same with DAE-
GAN. The noise level of the training samples for the DAE 
is also set to 12 dB. F1-score is used to evaluate the 
classification ability of different methods in a range of 
value [0, 1]. When F1-score is close to 1, it indicates that 
the method has a strong recognition ability.  

Fig.7 shows comparison results of different features 
learning methods under SNR of 18 dB. It can be seen that 
the F1-score of the DAE-GAN is at least 0.95, higher than 
that of DAE and AE-GAN in all conditions. On the one 
hand, the DAE-GAN is better than AE-GAN as AE-GAN has 
no resistance against noise. This clearly indicates that the 
anti-noise ability of the proposed method is improved by 
integrating denoising code. On the other hand, through 
the adversarial learning mechanism of DAE-GAN, the 
generator and discriminator are concurrently optimized, 

which is further enhanced the capacity of feature 
expression. 
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Fig 7 F1-score under dataset A2 and dataset B2 

Comparison of the GPC with typical neural network 
classifiers is conducted, including Softmax, Linear SVM, 
Kernel SVM, and random forest (RF). The testing results 
as listed in Table 3 show that the GPC provides higher 
performance compared to the other classifiers. 
Table 3. Testing accuracy under different classifiers. 

Classifiers GPC 
Soft-
max 

Linear 
SVM 

Kernel 
SVM 

RF 

R1 (%) 99.4 96.8 96.4 98.6 89.3 

R2 (%) 99.5 97.6 97.4 98.8 92.6 

4.2.3 Effect a portion of labeled data 

The proposed approach is useful where the 
availability of labeled data is limited. It is important to 
investigate the robustness of the method on the 
different ratios of labeled data to unlabeled data. 
Therefore, further study is carried out by changing the 
fraction of dataset A4 that is used for GPC training from 
1 to 8% with a step size of 1. Meanwhile, the effect of the 
proportion of dataset B3 to dataset B1 on the testing 
accuracy is also studied. Fig. 8 shows the result of the 
average accuracy for 10 trials.  
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Fig 8 Effect of a portion of labeled data 
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The results indicate that the accuracy improves 
rapidly with the fraction of labeled data increasing from 
1 to 5%. It can be seen that even with 3% of labeled data, 
the accuracy is above 97%, which shows that the features 
learned from unlabeled data are representative. With 
further increase of labeled data, the accuracy tends to 
increase slightly and became stable. The result shows 
that the proposed approach achieves satisfactory 
accuracy and excellent identification ability of new 
conditions even with very few portions of labeled data. 

4.3 Visualization of learned features 

In order to demonstrate that the proposed approach 
is able to learn effective features and distinguish the 
representative features, the features learned by the 
DAE-GAN is visualized via a technique ‘‘t-SNE” [10]. The 
t-SNE is an effective data visualization technique for 
high-dimensional data. In this study, the dimensionality 
reduction technique ‘‘t-SNE” is used to convert the 16-
dimensional features to a two-dimensional map. The 
resulting maps of dataset A2 and dataset B2 are shown 
in Fig. 9. It can be seen that the DAE-GAN features of 
different conditions are separated well. More details can 
be included in the final paper. 
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Fig 9 Visualization of learned features 

5. CONCLUSIONS 
This paper presents an intelligent approach for 

combustion condition monitoring based on DAE-GAN 
and GPC. This approach overcomes the typical 
drawbacks of the traditional methods. The DAE-GAN can 
automatically extract robust features from a massive 
number of unlabeled data. Only a small amount of 
labeled data is needed to train the GPC. In addition, the 
proposed approach is able to recognize newly occurred 
conditions by simply retraining the established GPC with 
a few numbers of new condition labeled data. The 
robustness of the proposed approach was evaluated by 

corrupting the original images with different levels of 
noise. Compared with different feature learning 
methods and classifiers, the proposed approach is able 
to provide better accuracy for identifying the 
combustion conditions. 
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