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ABSTRACT 
 The integration of large scale wind farms has 

brought new challenges to the transient stability 
assessment (TSA) problem and difficult measurement of 
data results in fewer samples. In order to assess the state 
of the system in the case of small sample data, a deep 
residual learning (DRL) algorithm that can train deeper 
neural networks to avoid gradient vanish and gradient 
explosion is proposed. Firstly, the original input features 
are constructed by using the data to describe the 
dynamic characteristics of the power system. Secondly, 
the DRL trained is applied to the TSA problem. Finally, 
Compared with the plain convolutional neural networks, 
the proposed DRL achieves the higher accuracy, 
moreover, it has the highest unstable F1-score and stable 
F1-score. Case studies on the modified IEEE New England 
39-bus system with wind farms integration exhibit the 
effectiveness of the proposed algorithm.   

 Keywords: wind farms, transient stability 
assessment, simple data, deep residual learning, plain 
network  

1. INTRODUCTION 
The large-scale integration of wind farms has made 

the operation and stability characteristics of the power 
grid more complicated. It makes the power grid more 
vulnerable to large damage and major failures. After a 
large disturbance in the power grid, it is necessary to 
quickly and accurately judge system state and take 
appropriate protection measures to prevent large-scale 
collapse and severe instability of the system. Transient 
stability assessment (TSA) is one of the important tools 
in the contingency analysis of power systems [1]. The 
traditional TSA methods mainly include time domain 
simulation (TDS) method and energy function method. 
The speed and accuracy is the key to the security and 

stability assessment issues. However, the TDS method is 
complex, time-consuming, hence usually only offline 
evaluation is possible. Although the direct method is 
faster than the TDS method, its result is often too 
conservative. 

The operational data collected in the actual grid 
operation is rich and huge, and the artificial intelligence 
(AI) method effectively screens out and analyzes the 
critical data to realize the preliminary judgment of the 
system stability level and weak links [2]. The AI-based 
TSA method has a high execution speed and can meet 
the requirements of online operation [3]. TSA has made 
great progress from the initial artificial neural network 
(ANN)-based TSA to the current machine learning-based 
TSA. ANN has attracted a lot of interests from 
researchers because of its information distributed 
storage, information parallel processing, fault tolerance. 
ANN has been widely used in the critical clearance time 
prediction, energy margin estimation, maximum rotor 
angle prediction, or stability classification. However, with 
the development of ANN, the problems have emerged 
such as over-fitting, local optimization, and feature 
extraction difficulty problems. These problems have 
prompted the formation and development of deep 
learning network. 

Compared with traditional neural networks, deep 
learning has two advantages: one is it can learn the 
characteristics of the essential attributes of data, and the 
other is it can achieve far more precision. Recent work in 
[4] reported a novel methodology to develop a TSA 
system based on a temporal self-adaptive scheme, 
aiming to balance the trade-off between assessment 
accuracy and response time. Fast transient stability 
batch assessment using cascaded convolutional neural 
networks is presented in [5]. 
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The remainder of this paper is organized as follows: 
Section 2 introduces the data acquisition. A TSA 
framework based on deep residual learning (DRL) in 
detail is proposed in Section 3. The proposed algorithm 
is implemented in the IEEE New England 39-bus system 
in Section 4 to test the experimental results. Section 5 
gives the conclusion. 

2. DATA ACQUISITION 
System data is generated in the simulation software 

of PSD-BPA by considering different load levels, fault 
location and fault duration. Moreover, when changing 
the loads, the corresponding changes of generator 
output to ensure the system power balance and the bus 
voltage is maintained within a reasonable range of 
0.95~1.05p.u. The fault location is located at 0%, 20%, 
50%, 80% of the transmission line. The fault type is a 
three-phase permanent short circuit, and the fault 
duration is considered to be 0.10s, 0.15s, 0.18s, and 
0.20s, respectively. The simulation duration is set to 3s. 

This proposed algorithm is in contrast to the 
algorithms in the existing research literature [6] and is 
consistent with the original feature data in the literature.  

The state of the system is determined by calculating 
whether the absolute value of the generator rotor angle 
exceeds 360 degrees over a period of time. If it exceeds 
360 degrees, the system is considered as unstable and 
the class label of “0” is assigned for the simulation case. 
If it is not exceeded, the system is regarded as stable and 
the class label of “1” is assigned [6]. 

3. PROPOSED TSA FRAMEWORK 
This paper summarizes the TSA problem as: for y=f(X) 

and the pattern {(yi,Xi)}(i=1,2,...,n). Deep residual 
learning learns the mapping F from X to y, and quickly 
identify and train a new pattern of similar patterns 
{(yi,Xi)}. Where y represents the transient stability state 
of the selected grid, X = {x1, x2,. . ., xm} represents the 
feature quantity such as total active load, maximum 
generator rotor angle at the beginning time of fault and 
the cutting time of the fault, etc, and m is the number of 
features. 

3.1 Network architecture 

ANN, Plain and Residual nets are tested in this paper. 
These networks are shown in Fig 2. ANN will not be 
described in detail in this section. 
Plain Network. The convolutional layers mostly have 1x1 
filter and follow two simple design rules: (i) the layers 
have the same number of filters for the same output 
feature map size; and (ii) if the feature map size is halved, 

the number of filters is doubled so as to preserve the 
time complexity per layer. The network ends with a 
global average pooling layer and a 4-way fully-connected 
layer with softmax. The total number of weighted layers 
are 6 and 11 in Fig 2. 
Residual Network. Residual learning was adopted to 
every few stacked layers. A building block is shown in Fig 
1, which was defined as 

 
iy (x,{ }) xF W                 (1) 

Where x and y are the input and output vectors of the 
layers considered. The function 

i(x,{ })F W  represents 

the residual mapping to be learned. For the example in 
Fig 1 that has two layers. The operation F(x)+x is 
performed by a shortcut connection and element-wise 
addition. In this paper, the second nonlinearity is 
adopted after the addition.  

weight layer

Weight layer

x

x

identityF(x)

F(x)+x

relu
 

Fig 1 Residual learning: a building block 

Compared with the Plain network, the Residual 
network can train deeper neural networks to avoid 
gradient vanish and gradient explosion. Residual 
networks consist of a number of neuron sub-modules 
connected by a compartment, which we call a residual 
block. Skip connection is used to directly establish the 
layer connection, so as to be able to train deeper neural 
networks and effectively improve the training effect. 

3.2 Evaluation of Indices  

1) Accuracy of the model:  Accuracy is the most 
commonly used performance metric in a classification 
task, and is the ratio of the number of correctly 
categorized samples to the total number of samples. For 
the sample set D, the classification accuracy is defined as 

i i

1

1
acc( ; ) II( ( ) ) 1 ( ; )

m

i

f D f x y E f D
m 

         (2) 

2) Stable/unstable F1-score: Although the accuracy is 
common, it does not meet all the task requirements. For 
the two-category problem, the sample can be divided 
into a true positive (TP), a false positive (FP), a true 
negative (TN), and a false negative (FN) according to the 
combination of the real category and the learner 
prediction category. In this case, TP+FP+TN+FN=the total 
number of samples. Precision and recall are defined as 
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Fig 2 Example network architectures for TSA 
Precision is the ratio that is correctly predicted to be 

positive and positive for all predictions. Recall rate is the 
proportion that is correctly predicted to be positive and 
positive for all. 

F1-score is a measure of the classification problem. 
It is the harmonic mean of the precision rate and the 
recall rate, with a maximum of 1 and a minimum of 0. 
The large the F1-score, the better the effect. The 
definition of F1-score is  

2 2
1

2 +

P R TP
F

P R TP FP FN

  
 

  
         (5) 

When F1-score is small, TP increases relatively, while 
F1-score decreases relatively, that is, both P and R 
increase relatively.  

4. EXPERIMENTAL RESULTS 

4.1 Test System and training details 

The New England 39-bus test power system is 
modified to train and evaluate the performance of the 
proposed algorithm, which is shown in Figure 2. The test 

system involves 39 buses, 10 generation units including 
5 traditional generators and 5 wind farms, 19 loads, and 
46 transmission lines. For the optimization of the 
proposed network, we adopt an Adaptive Moment 
Estimation (Adam) optimizer with 10-3 learning rate. The 
experiments are performed on a workstation with I7-
7700k CPU and a GeForce GTX 1080Ti GPU. The PyTorch 
framework provided by FaceBook is selected for 
establishing the proposed residual neural network. 

Wind
Farm

Wind
Farm

Wind
Farm

Wind
Farm

Wind
Farm

 
Fig 3 the modified New England 39-bus system 

4.2 Specific analysis of the proposed algorithm 

In this paper, the small sample data is used to verify 
the effectiveness of the proposed algorithm. The total 
data is 2158, including 1378 stable data and 780 unstable 
data. The training data and testing data are divided 
according to the following table I. Among them, in order 
to reduce the impact of training sample category 
imbalance on model training, we divide the stable and 
stable data according to the ratio of 1:1 when dividing 
the data set. The confusion matrix of the proposed 
algorithm is presented in Table II.  

Table I Training data and testing data 

 Stable data Unstable data 

training data 600 600 

testing data 778 180 

Table II Confusion matrix 

 Prediction results 

unstable stable 

Actual 
results 

unstable 157 23 

stable 81 697 
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4.3 Comparison of Different Classifiers 

For validity verification, eight types of algorithms 
including KNN, SVM (different kernel functions are used), 
ANN and CNN are used to compare the proposed TSA 
model. The ANN algorithm and the CNN algorithm use 6-
layer and 11-layer respectively (excluding the lass full 
connection (fc) layer—for classification). The reason for 
adopting 6-layer and 11-layer is that the proposed 
algorithm includes 5 res blocks, which are replaced by 1 
convolution layer/full connected layers, or 2 convolution 
layers/fully connected layers. Thereby, Plain 
CNN6/ANN6 and Plain CNN11/ANN11 are obtained. 
Table III presents the performance indices of the 
proposed algorithm and other comparison algorithms. 

Table III shows that CNN with res blocks has the 
highest accuracy based on the small sample data. It can 
also be obtained from Table III that in the experiment 
CNN with Res blocks has the biggest unstable F1 and 
stable F1. That means the proposed algorithm achieves 
the highest accuracy and F1-score, which are 
asymptotically more efficient than other algorithms.  

Table III contrast of TSA of different models  

 Classification 
accuracy 

Unstable 
F1-score 

Stable 
F1-score 

KNN(K=3) 84.24% 66.96% 89.65% 

SVM(Linear 
kernel) 

80.48% 60.63% 87.02% 

SVM(RBF 

kernel） 
19.00% 31.69% 0.51% 

SVM(sigmoid 
kernel) 

81.21% —— 89.63% 

ANN 5 81.63% 64.23% 87.64% 

ANN 10 84.55% 68.38% 89.78% 

Plain CNN 5 78.39% 61.02% 85.05% 

Plain CNN 10 81.84% 64.63% 87.78% 

Proposed(CNN 
with Res blocks) 

89.14% 75.12% 93.06% 

 
Fig 4 Accuracy, unstable F1 and stable F1 on different data 

 

4.4 Comparison of effects under different data volumes 

The comparison results based on small sample data 
are presented in Fig 4. It shows that the proposed 
algorithm can achieve high accuracy, unstable F1 and 
stable F1. If the amount of data for training is large, these 
indices will be higher. 

5. CONCLUSION 

TSA framework with sample data based on the DRL 
is presented in this paper. Eight types of algorithms 
including KNN, SVM (different kernel functions are used), 
ANN and CNN are used to compare the proposed TSA 
model. Example result shows the DRL algorithm with five 
building blocks has exhibited satisfactory performance. It 
is suitable for TSA based on an insufficient amount of 
data or a small amount of data. In conclusion, the results 
demonstrate that the highest accuracy, unstable F1-
score and stable F1-score, which guarantee the 
performance of the TSA framework. 
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