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ABSTRACT 
 This paper presented a methodology of artificial 

neural network (ANN) for the prediction of flow patterns 
in two-phase air-water flow along upward inclined pipes. 
In the built ANN model, superficial velocity of air, 
superficial velocity of water, and inclined angle were set 
as inputs while the quantified flow patterns were defined 
as the output. In total, 1952 experimental data points 
that were reported in the literature were trained and 
tested by the designed network structure. The predicting 
accuracies of stratified smooth, stratified wavy, annular, 
intermittent, bubble flow are all above 90%, with the 
exception of dispersed bubble flow. 
 
Keywords: artificial neural network (ANN); two-phase 
flow; flow patterns. 

1. INTRODUCTION 
Two-phase flow is commonly significant for various 

energy sectors, such as petroleum and nuclear 
industries. It also plays an essential role in subsea 
operations, such as fluid transportations in pipelines. 
Accurate predictions of two-phase characteristics are 
highly desired by industries, including flow pattern 
forecasting. Numbers of previous studies have 
experimentally investigated flow patterns in the vertical, 
horizon, and inclined pipes [1],[2],[3].  

The term of flow patterns is used to describe the 
spatial distribution of phases, occurring during 
multiphase flow in a pipe. Prediction of flow patterns is 
one of the fundamental issues in two-phase flow studies, 
which can be used to support the industry for a better 
design in their commercial flow loops.  

The commonly accepted horizontal flow patterns are 
summarized in Fig. 1, which are classified in mist, 
stratified, stratified wavy, annular, intermittent, slug, 
plug, and bubble flow. For two-phase vertical flows, one 
of the most widely accepted flow regime classifications 
was suggested by Hewitt and Hall-Taylor [4], who 
defined basic flow patterns as bubble, slug, churn, and 
annular in upward vertical two-phase flows.  

Comparing to vertical and horizontal flow 
investigations, fewer research have been carried out on 
upward or downward inclined two-phase flows. In this 
paper, a fully connected ANN model was designed for 
flow pattern identification with consideration of 
upwards inclination angles.  

 
Fig 1 Flow patterns [7].  
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2. EXPERIMENTAL DATASET 
The used data was extracted from the database built 

by Pereyra et al. (2012) [5], which was originally used to 
quantify the confidence level of methods in air-water 
two-phase flow pattern prediction. The experimental 
setup consists of a pipe with the diameter of 50.8 mm. 
The inclined angles varied from 0° to 90°. The air 
superficial velocity varied from 0.016 to 40 m/s while the 
water superficial velocity changed in the range of 0.0022 
~ 6.3 m/s.  

3. ARTIFICIAL NEURAL NETWORK MODEL 
Artificial neural network (ANN) is a biologically 

inspired system, which consists of interconnected 
neurons in input and output layers, linking through 
defined weights and biases [6]. In this paper, TensorFlow, 
which is developed by Google, was used to perform a 
fully connected artificial neural network model. It is an 
end-to-end open source platform for machine learning, 
with a focus on deep learning. The model itself has three 
layers and has been trained for 15000 epochs. Fig 2 
shows the schematic of the designed ANN. 

The Min-Max scaler, which is one of the most 
frequently used scaling algorithms is applied in the 
model to shrink the range of training and testing data 
into the range between 0 and 1. The corresponding 
formula can be expressed as:  

 

𝑋𝑠𝑡𝑑 =
𝑥𝑖 −min(𝑥)

max(𝑥) − min(𝑥)
 (1) 

 
 

𝑋𝑠𝑐𝑎𝑙𝑒𝑑 = 𝑋𝑠𝑡𝑑 
 

(2) 

where𝑥𝑖is the original value; 𝑋𝑠𝑡𝑑 is the normalized 
value; min(𝑥)and max(𝑥) are the minimum and the 
maximum value in the span, respectively; 𝑋𝑠𝑐𝑎𝑙𝑒𝑑 is the 
scaled value. 

The learning rate is set as 0.0001 while the 
training/testing epochs is defined as 15000. The 
initialization of network weights was realized through 
the Xavier initialization to make sure the weights are 
located in a reasonable range. The activation function, 
also known as the transfer function, was applied to get 
the outputs of nodes. More specifically, the ReLU 
(Rectified Linear Unit) non-linear activation functions 
were applied in this study. The function of tf.matmul is 
used to create matrixes that contain multiple tensors. 
The following correlations are used to implement the 
fully connected layers:  

 

𝐻𝑖 =∑𝑥𝑖𝑤𝑖𝑗

𝑚

𝑗=1

+ 𝑏𝑗 
(3) 

 
ℎ = 𝑅𝑒𝐿𝑈(𝐻𝑖) (4) 

 
where 𝐻𝑖 is the net input of neuron j in output or 

deeper hidden layer; 𝑥𝑖 is the input of neuron j; 𝑤𝑖𝑗 is 

the weights that linked neuron i and neuron j; 𝑏𝑗 is the 

bias associated with neuron j. 

The designed ANN was trained with 1952 groups of 
data that were recorded by a pipe with a diameter of 2 
inch, where superficial velocity of air, superficial velocity 
of water, and inclined angle were set as input variables. 
The outputs are defined through quantified flow 
patterns, representing 1 - Dispersed Bubble, 2 - Stratified 
Smooth, 3 - Stratified Wavy, 4 - Annular, 5 - Intermittent, 
and 6 - Bubble. Most numbers of tests were conducted 
in the superficial velocity interval of 0.01 ~ 10 m/s for 
both liquid and gas phases while variations of upward 

 
Fig 2 Defined ANN configuration.  
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inclination angles were relatively evenly distributed in 
the range of 0 ~ 90°. 

Our model includes three fully connected hidden 
layers and output layer. For every 100 epochs, the mean 
accuracy is calculated. The loss function of Mean Square 
Error (MSR) is used to resolve how far the predicted 
values deviate from the actual values in the testing data, 
which can be expressed as: 

 

𝑀𝑆𝑅 =
1

𝑛
∑[

(𝑀𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)𝑖 − (𝑀𝑎𝑐𝑡𝑢𝑎𝑙)𝑖
(𝑀𝑎𝑐𝑡𝑢𝑎𝑙)𝑖

]

2𝑛

𝑖=1

 (5) 

 
where 𝑛 is the number of tests; 𝑀𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 is the 

predicted value from the ANN model; 𝑀𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 is 

the recorded value in the experiments.  

4. RESULTS AND DISCUSSIONS  
As presented in Fig 3, the network model started to 

converge after 12000 training/testing iterations while 
MSE = 0.01 for the testing data.  

 

 
Fig 3 Variations of mean squared error (MSE) over 15000 

iterations of the ANN training and testing loops. 

 
The predicted flow patterns by the neural network 

are compared with the experimental results in Fig 4. The 
predicted results are satisfactory for most data points 
under all inclinations. Along the Y axis, the numeric flow 
patterns are: 1 - Dispersed Bubble, 2 - Stratified Smooth, 
3 - Stratified Wavy, 4 - Annular, 5 - Intermittent, and 6 - 
Bubble. The classification accuracies in flow pattern 
predictions of stratified smooth, stratified wavy, annular, 
intermittent, bubble flow are all above 90%, with the 
exception of dispersed bubble flow. 

 

In order to further validate the reliability of the built 
ANN model, it was further validated with Barnea 
correlations [1]. The dataset consists of superficial 
velocity of air (0.03 ~ 40 m/s), superficial velocity of 

 
Fig 4 Comparisons of experimental and predicted flow patterns during air-water two-phase flow in a 2-inch pipe at atmospheric 

conditions and different inclined angles. 
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water (0.003 ~ 6 m/s), and inclination angles (0°, 1°, 30°, 
80°, and 90°). 

The comparing results of flow pattern predictions 
between ANN model (dotted points) and Barnea 
correlations (full lines) during air-water two-phase flow 
in a 2-inch with an upward inclined angle of 80° is 
presented in Fig.5. The ANN model performed well for 
Stratified Smooth, Stratified Wavy, Annular, 
Intermittent, and Bubble flow. However, the ANN model 
has difficulties in recognizing dispersed bubble flow. 
More specifically, in Fig 5, certain dispersed bubble flow 
points have been identified as annular or intermittent 
flow.  

5. CONCLUSIONS  
 
In this paper, a fully connected neural network was 

established to predict flow patterns under different 
inclinations. The inclined angles of experimental setup 
varied from 0° to 90°. In this model, superficial velocities 
of air & water as wells as inclined angles were defined as 
input variables for predicting flow patterns. The ANN has 
been trained and tested for 15000 epochs. The obtained 
model provided an accepted MSE = 0.01 for over 700 
testing data points. In addition, the designed ANN model 
was further validated by the Barnea correlations. Due to 
the capacity of this model, it is expected that this ANN 

can be used to predict flow patterns in a 1-inch inclined 
pipe.  
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Fig 5 Comparison of flow pattern predictions between ANN model (dotted points) and Barnea correlations (full lines) during air-

water two-phase flow in a 2-inch, upward inclined (80°) pipe at atmospheric conditions. 


