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ABSTRACT 
Energy efficiency is at the core of multiple national 

climate protection plans. Consequently, roadmaps for 
energy efficiency measures aim to undercut certain 
energy consumption limits for residential one- and two-
family households. However, these roadmaps are often 
based only on physical building parameters, neglecting 
the impact of occupant behavior. In this paper, we apply 
vine copula quantile regression to derive residential 
household specific conclusions on optimal long-term 
energetic retrofitting roadmaps under consideration of 
energy-economical behavior of the occupants. Our 
analysis shows that these behavioral factors highly 
impact the recommendation of certain energetic 
retrofitting roadmaps. Compared to generic approaches 
this leads to average savings of 8.2% and up to 32.8% in 
exceptional circumstances. We conclude that future 
policy decisions on energy efficiency measures for 
residential buildings should consider behavioral factors 
to lever their effects. 
 
Keywords: vine copula quantile regression, energy 
conservation in buildings, long-term energetic 
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NOMENCLATURE 

Abbreviations  

EEM Energy Efficiency Measure 
SHL Specific Heat Load 

1. INTRODUCTION 
Despite ambitious international climate goals, the 

current investment volume of energy efficiency 

measures (EEMs) is not enough for the postulated low-
carbon transition paths. With household space- and 
water heating accounting for a fifth of total energy 
consumption in Germany, this sector offers enormous 
potential to still reach these goals through energy 
efficiency improvements [1]. However, economically and 
ecologically sensible energy efficiency measures are 
often not implemented, which has coined the term 
energy efficiency gap [2]. This is partially due to the 
difference between estimated and realized energy bill 
savings, arising from imprecise predictions through the 
negligence of occupant behavior [3]. These uncertainties 
coupled with high risk aversion of decision makers lead 
to the rejection of EEMs [2]. Thus, models able to 
concisely predict energy bill savings potentially help to 
overcome the energy efficiency gap. However, since full 
refurbishment is often not feasible for financial reasons, 
we assume a stepwise approach in the form of 
roadmaps. We focus on space- and water heating, so 
EEM henceforth refers to energetic retrofitting. 

The overall goal of this paper is to derive optimal 
long-term energetic retrofitting roadmaps by maximizing 
energy efficiency gains while explicitly accounting for 
energy-economical behavior. We elaborate on a method 
first introduced in [4] based on vine copula quantile 
regression to concisely predict energy bill savings after 
the implementation of EEMs. This approach enables 
analyzing different levels of energy-economical behavior 
as it provides full information on the distribution of 
energy consumption. At the same time, we implicitly 
include occupant behavior in the model fitting by relying 
on an extensive real-world data set of 25,000 German 
households.  
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2. THEORETICAL BACKGROUND ON VINE COPULAE 
A 𝑑-dimensional copula is a 𝑑-variate distribution 

function on [0,1]𝑑  with uniformly distributed 
marginals. For each 𝑑 -dimensional random variable 
𝑋~𝐹  with marginal distribution functions 𝐹𝑖 , 𝑖 =
1, … , 𝑑  exists a 𝑑-dimensional copula ℂ equal to the 
joint distribution function [5]. The advantage of copulae 
is the ability to easily model multivariate data exhibiting 
complex patterns of dependence [6]. In higher 
dimensions, this is done using sequences of bivariate 
copulae, called vine copulae [6]. This work focuses on D-
vines due to their flexibility and performance advantage 
when conditionally simulating a response variable 𝑌~𝐹𝑌 
for given predictor variables 𝑋𝑖~𝐹𝑖 .  This can be 
mathematically expressed as 

𝐹𝑌|𝑋1,…,𝑋𝑑

−1 (𝛼|𝑥1, … , 𝑥𝑑) = 𝐹𝑌
−1 (ℂ𝑉|𝑈1 ,…,𝑈𝑑

−1 (𝛼|𝑢1, … , 𝑢𝑑)), (1) 

where 𝑉 = 𝐹𝑌(𝑌)  and 𝑈 = 𝐹𝑋(𝑋).  Further, 𝛼  and 

ℂ𝑉|𝑈1,…,𝑈𝑑

−1  are depicting the desired quantile and inverse 

of the conditional distribution function of 𝑉  given 
𝑈1, … , 𝑈𝑑, respectively [7]. Then, the left side of Equation 
(1) equals the value conditional on 𝑥1 , … , 𝑥𝑑 at the 𝛼-
quantile. Thus, this approach provides full information 
on the distribution of  𝑌, mitigating the shortcomings of 
conventional point estimation methods. In [7,8] the 
authors compared D-vine copula quantile regression to 
competitor models finding that they, when correctly 
modelled and used, almost consistently outperform. 

3. DATA PREPARATION AND MODEL FITTING 
The used real-world data set comprises 25,000 

German one- and two-family households with 74 
variables depicting building characteristics, registered 
over the period from April 2007 to January 2014. Next to 
physical building components, it provides detailed 
information on regional affiliation, energy source, and 
technical variables, e.g., exhaust gas loss. Since a 
standardized measure for energy consumption is not 
directly included in the data set, we introduce the 

specific heat load (SHL), given in 
𝑊

𝐾⋅𝑚2. The SHL enables 

meaningful comparisons by extracting influences from 
weather and living space based on the German V 4108-6 
norm 

𝑄 =
1

1000
⋅ 24ℎ ⋅ 𝑆𝐻𝐿 ⋅ 𝒯 ⋅ 𝐴𝑙𝑖𝑣𝑖𝑛𝑔, (2) 

where 𝑄 is the annual energy consumption in 𝑘𝑊ℎ, 𝒯 
the temperature influence, e.g., heating degree days, 

and 𝐴𝑙𝑖𝑣𝑖𝑛𝑔 the living space. Next, we prepared the data 

by excluding contradicting, empty, or flawed entries, as 
well as variables lacking explanatory power for the SHL. 

For model fitting, we prefer a variable selection 
analogous to [9] over a parsimonious forward selection 
algorithm by [8] based on Akaike information criterion 
and average coverage error. Thereby, we constructed 
groups of variables describing the same building 
component and chose only the strongest representants 
to avoid multicollinearity. The selected variables are 
building age, living space, energy type, presence of roof 
insulation, wall insulation thickness, window-glazing, 
exhaust gas loss, and presence of solar panels. This 
selection restricts to the compatible EEMs depicted in 
Table 1, which we use for the roadmap composition. 

ID 
Building 

component 
Situation 

before EEM 
Situation after 

EEM 
Total costs  

1 Heating 
system 

Fan-assisted oil 
boiler, exhaust 
gas loss = 10% 

Heat pump, 
exhaust gas 
loss = 0% 

662.91€ ⋅

(𝐴𝑙𝑖𝑣𝑖𝑛𝑔)
0.513

  

2 Roof insulation None;  
U = 1.4 

15 cm insula-
tion; U=0.24 

192.62€ ⋅
𝐴𝑟𝑜𝑜𝑓   

3 Solar panel 
installation 

None Two solar 
panels (~11m²) 

530.31€ ⋅

(𝐴𝑙𝑖𝑣𝑖𝑛𝑔)
0.501

  

4 Wall insulation None;  
U = 1.4 

15 cm insula-
tion; U=0.24 

139.04€ ⋅
𝐴𝑤𝑎𝑙𝑙  

5 Window re-
placement 

Single glazing;  
U = 5.0 

Triple thermal 
insulation 
glazing; U=0.7 

438€ ⋅
𝐴𝑤𝑖𝑛𝑑𝑜𝑤   

Table 1: EEMs compatible with our D-vine, costs based on [10]. U 
refers to the heat transition coefficient. 

Building age and living space cannot be improved 
through EEMs, thus we ran several analyses with 
different fixed values (three living spaces and eight 
building ages). Moreover, we evaluated different 
quantiles of energy-economical behavior individually, 
namely 0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, and 0.99, 
for a total of 216 analyses. Lower values refer to energy-
conscious, higher values to energy-wasteful behavior.  

 

Figure 1:SHL process undergoing EEMs. 
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4. EMPIRICAL RESULTS AND DISCUSSION 
When successively undergoing aforementioned 

EEMs, the SHL is lowered in each step, which equals a 
monotonically decreasing step function, as displayed in 
Figure 1. Then, for a given constellation of living space, 
building age, and energy-economical behavior, the 
specific roadmap was chosen which minimized the 
integral under the SHL process. Thereby, we differentiate 
between an absolute perspective, focusing on the SHL 
only, and a relative perspective, additionally accounting 
for the costs in Table 1. The aggregated results and most 
common paths for the absolute perspective are depicted 
in Table 2 and Figure 2, for the relative perspective in 
Table 3 and Figure 4. 

ID Step 1 Step 2 Step 3 Step 4 Step 5 

Heating system 144 19 35 18 0 

Roof insulation 0 12 52 138 14 

Solar panel installation 13 106 69 22 6 

Wall insulation 50 78 26 21 41 

Window replacement 9 1 34 17 155 

Table 2: Aggregated numbers of EEMs for each step in the absolute 
savings evaluation, added up for the 216 constellations. The numbers 
indicate how often the measures were implemented at each step. 

 
Figure 2: Most common paths in the absolute savings evaluation, “0” 
equals the initial, unrenovated state. Only branches with at least 10 
occurrences are displayed. Thickness indicates frequency. 

There is a more pronounced branch, starting with 
the heating system, as it exhibits the highest savings 
potential. Directly upgrading the heating system without 
prior insulations, however, is contrary to practice, as it 
might result in an oversized and thus inefficient system. 
Copulae are memoryless and can’t reflect this issue 
correctly, thus caution is advised when interpreting the 
results. 

                                                        
1  We adjusted the thresholds for reasons of clarity and to convey the 

overall picture appropriately. 

 
Figure 3: Most common paths for different levels of energy-
economical behavior in the absolute savings evaluation. Green reflects 
energy-conscious households (1% and 5% quantiles) and red energy-
wasteful households (95% and 99% quantiles). Only branches with at 
least 8 occurrences are displayed.1 Thickness indicates frequency. 

ID Step 1 Step 2 Step 3 Step 4 Step 5 

Heating system 130 77 2 6 1 

Roof insulation 0 5 46 152 13 

Solar panel installation 84 127 0 0 5 

Wall insulation 2 7 135 32 40 

Window replacement 0 0 33 26 157 

Table 3: Aggregated numbers of EEMs for each step in the relative 
savings evaluation, added up for the 216 constellations. The numbers 

indicate how often the measures were implemented at each step. 

 
Figure 4: Most common paths in the relative savings evaluation, “0” 

equals the initial, unrenovated state. Only branches with at least 10 
occurrences are displayed. Thickness indicates frequency. 

So far, we considered all quantiles. However, when 
examining individual branches, we notice differences for 
varying energy-economical behavior. E.g., energy-
wasteful households should more often prioritize 
insulation over heating systems and energy-conscious 
households should more often consider early window 
replacement. Figure 3 visualizes these results. The copula 
model indicates low influence from living space and 
building age compared to energy-economical behavior. 
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When accounting for the costs in Table 1, two paths 
become more pronounced, only further down the tree 
branches more strongly again. The aggregated results 
and most common paths are depicted in Table 3 and 
Figure 4. We find energy-economical behavior to highly 
effect these first two EEMs, as displayed in Figure 5. 

 
Figure 5: Most common paths for different levels of energy-

economical behavior in the relative savings evaluation. Green reflects 
energy-conscious households (1% and 5% quantiles) and red energy-
wasteful households (95% and 99% quantiles). Only branches with at 
least 8 occurrences are displayed. 1 Thickness indicates frequency. 

To evaluate the economic benefit, we compared our 
model to a generic approach with no consideration of 
energy-economical behavior, i.e., which recommends 
the same roadmap to every household independent of 
the behavior. We settled for the roadmap recommended 
to the median household. Table 4 depicts the results. 

 Absolute Relative 

 Average Peak Average Peak 

1%-quantile 6.85% 32.86% 6.48% 28.17% 

5%-quantile 5.37% 29.62% 4.87% 24.97% 

95%-quantile 3.93% 16.73% 1.29% 15.96% 

99%-quantile 9.48% 27.79% 5.64% 23.57% 
Table 4. Average and peak savings per quantile when accounting for 
energy-economical behavior compared to a generic approach. 

5. IMPLICATIONS AND CONCLUSION 
In this paper, we applied D-vine copula quantile 

regression to an extensive real-world data set to derive 
optimal long-term energetic retrofitting roadmaps under 
consideration of energy-economical behavior. To the 
best of our knowledge, we are the first to investigate the 
interface of these domains. The conducted analysis has 
several practical and political implications. First, 
consideration of energy-economical behavior is crucial 
for decisions upon energetic retrofitting roadmaps. 
Second, the copula model considers the heating system 
to exhibit the highest savings potential. Since upgrading 
the heating system without prior insulation is contrary to 
practice, this advises retrofitting several building 
components simultaneously to receive the savings from 
the heating system earliest possible. Third, the overall 
inclusion of big data into energy consumption estimation 

should be considered and promoted, as engineering 
models currently do not reflect occupant behavior. 

Our research, nonetheless, is beset with limitations. 
First, the memoryless property of our model does not 
allow for investigation of temporal interdependencies, 
which potentially explains the prioritization of the 
heating system. Second, the number of possible EEMs 
was limited due to the absence of further variables 
describing e.g., basement- and top floor insulation. 
Therefore, important EEMs were missing and a complete 
evaluation necessitates the cumbersome gathering of 
further data points. Third, the results are limited to 
German residential one- and two-family households, 
even though similar results are expected for other 
countries as well. 

However, these limitations give rise to new research 
potential. One natural direction includes incorporating 
artificial intelligence into the copula approach to allow 
for temporal interdependencies. Also, a change in the 
underlying data set might be beneficial, relaxing the 
focus on one country only and considering further EEMs. 
In general, further research is necessary to holistically 
understand the impact of energy-economical behavior, 
as current research is scarce. 
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