
Selection and peer-review under responsibility of the scientific committee of the 11th Int. Conf. on Applied Energy (ICAE2019). 
Copyright ©  2019 ICAE  

 

International Conference on Applied Energy 2019 
Aug 12-15, 2019, Västerås, Sweden 

Paper ID: 0664 

MODELING AND CONTROL OF CENTRALIZED EVS FOR REGULATION SERVICE 
 
 

Mingshen Wang1, Yunfei Mu1*, Hongjie jia1, Wenjin Qi2, Qian jiang1, Xiaolong jin1 

1 Key Laboratory of Smart Grid of Ministry of Education of Tianjin University, Tianjin 300072, China 

2 Jiangsu Electric Power Design Institute, Nanjing 211102, China 
 

 

ABSTRACT 
The high penetration of renewable energy incurs 

serious power fluctuations in the power system. The 
electric vehicles (EVs) under the centralized control tend 
to provide considerable regulation capacity for the 
power system. In the existing modeling methods for 
centralized EVs, the accurate control results for the 
regulation services were achieved by modeling each EV 
individually. However, the computational complexity 
was a serious problem for modeling large scale EVs. In 
this paper, a reduced modeling method for centralized 
EVs is developed by describing a population of EVs with 
a partial differential equation (PDE). This PDE modeling 
method uses a finite number of state-of-charge (SOC) 
intervals to describe the flows of charging, idle and 
discharging EVs. Considering the three connecting states 
(CNS) of EVs, this PDE modeling method realizes the 
power regulation for centralized EVs by changing the CNS 
of EVs located in different SOC intervals. Comparative 
simulations validate that the PDE modeling method for 
large scale centralized EVs achieves high control accuracy 
and high computational efficiency.  
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1. INTRODUCTION 
The stochastic characteristics of renewable energy 

add the difficulty to the power system regulation. In 
recent years, the electric vehicle (EV) has aroused 
considerable attention for its energy-saving feature and 
low-carbon emission. Large scale EVs under the 
centralized control have the potential to provide the 
effective regulation service for the power system [1].  

After travel, an EV requires connecting to the power 

grid and charge enough energy for its future travel. For 
an individual EV, the connecting period is usually much 
longer than the required charging period. Thus, we can 
change the EV’s power exchange with the power grid for 
the regulation service during the connecting period. 
Though the regulation capacity of one EV is small, the 
total regulation capacity of large scale EVs is 
considerable. It is essential to develop an effective 
modeling method for large scale EVs under the 
centralized control.  

A number of modeling methods have been 
conducted to implement the power regulation for 
centralized EVs. The modeling method for centralized 
EVs in [2] analyzes the stochastic traveling behaviors of 
EVs. In [3], the modeling for centralized EVs considers the 
various vehicle types. In [4], the various charging modes 
are considered in the modeling process for centralized 
EVs. The regulation for centralized EVs is realized by 
generating the individual control signal for each EV [5]. 
These modeling methods need to feature each EV and 
are regarded as the individual modeling method. 
However, the stochastic traveling behaviors, the various 
vehicle types, and the different charging modes incurred 
the different response characteristics of EVs and 
increased the computational complexity for modeling 
large scale EVs. For regulating large scale EVs, the 
numerous individual control signals added the control 
difficulty for centralized EVs as transmitting so many 
individual signals at the same time is a heavy workload.  

To address these crucial issues, the partial 
differential equation (PDE) modeling method is used to 
realize the power regulation for centralized EVs. Firstly, 
we use PDEs to model individual EVs with three 
connecting states (CNS), and four responding modes are 
defined by changing between different CNS. Then based 
on the respond modes, the EV flows of centralized EVs 
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are analyzed between the divided state-of-charge (SOC) 
intervals with a finite number, and the EV flows under 
different CNS are modeled with the PDEs. Considering 
the traveling behaviors of EVs, we use a unified PDE to 
describe the EV flows for EVs with different CNS. The 
modeling complexity is significantly decreased as the 
number of SOC intervals can be much smaller than the 
number of EVs. Then, the power regulation for 
centralized EVs is realized by computing the proportion 
of controlled EVs in each SOC interval, which simplifies 
the control process for large scale centralized EVs. 
Compared with the individual modeling method, 
simulation results validate the effectiveness of the PDE 
modeling and control method for centralized EVs.  

2. MODELING FOR AN INDIVIDUAL EV 
After travel, an EV requires connecting to the power 

system and withdraws enough energy for its future 
travel. Based on the power flow directions, the CNS of an 
EV can be divided into the charging state (CS), the idle 
state (IS), and the discharging state (DS). During the 
connecting period, the SOC variations of an EV can be 
described by the partial differential equation (PDE) as 
given by (1).  

, ,

, ,

cs cs

ds ds

/ ,  CS

( ) = 0,  IS

/ / ,  DS

i i i

i

i i i

p η q

s t

p η q






          (1) 

where i is the index of EVs; si(t) is the SOC value at time 
t; qi is the battery capacity; pi,cs/pi,ds is the rated 
charging/discharging (C/D) power, respectively; and 
ηi,cs/ηi,ds is the C/D efficiency.  

Based on the three CNS, four responding modes 
(RMs) are defined by changing from one CNS to another: 

(i) ‘CS→IS’, (ii) ‘IS→DS’, (iii) ‘DS→IS’, and (iv) ‘IS→CS’.  

3. MODELING AND CONTROL FOR CENTRALIZED EVS 

3.1 PDE modeling for centralized EVs 

For a population of system-connected EVs, XCS(t,s), 
XIS(t,s), and XDS(t,s) are defined as the numbers of EVs at 
SOC s and time t, with the CNS of CS, IS, and DS, 
respectively. Taking the EVs in CS as the example, the 
flow of EVs represented by XCS(s,t) crossing SOC s can be 
described by (2).  

CS cs( , ) = ( , ) [d / d ]F t s X t s s t           (2) 

where [ds/dt] indicates the average SOC variation of EVs 
in CS with respect to time.  

Based on Eq. (1), Eq. (2) is further described by (3).  

CS cs cs cs( , ) = ( , ) [ / ]F t s X t s p η q           (3) 

where pcs, ηcs, and q are the homogeneous parameters of 
pi,cs, ηi,cs, and qi, respectively.  

Within an infinitesimal SOC interval [s, s+ds], the 
variation of XCS(s,t) with respect to time is achieved by 
the difference between the entering flow and the 
existing flow as given by (4).  
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where acs=pcs·ηcs/c.  
For the EVs in IS and DS, the variations of Xis(s,t) and 

Xds(s,t) with respect to time can be similarly achieved by 
(5) and (6), respectively.  

is ( , ) / = 0X t s t                (5) 

ds ds ds( , ) / = - ( , ) /X t s t a X t s s           (6) 

where ads=-pds/ηds/c.  

 
Fig 1  SOC intevals and EV flows 

As given by Fig. 1, EVs’ SOC variation range [Smin, Smax] 
is divided into N small SOC intervals. For the EVs in CS and 
DS, the EV flow between two adjacent SOC intervals is 

illustrated by an arrow. Considering RMs ‘CS→IS’ and ‘IS

→CS’, the EV flows of EVs in CS are described by (7) 

based on Eq. (4). Considering RMs ‘DS→IS’ and ‘IS→DS’, 
the flows of EVs in DS are described by (8) based on Eq. 
(6). Considering all the four RMs, the EV flows of EVs in 
IS are described by (9) based on Eq. (5).  
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where Δs=(Smin-Smax)/N; Xj represents the number of EVs 
located in SOC interval j; uj(t) (1≤j≤N) represents the 

proportion of EVs in Xj for the ‘CS→IS’ control; and vj(t) 
(N+1≤j≤2N) represents the proportion of EVs in Xj for the 

‘IS→CS’ control and vj(t)=0 (1≤j≤N).  
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where uj(t) (N+1≤j≤2N) represents the proportion of EVs 

in Xj for the ‘IS→DS’ control and uj(t)=0 (2N+1≤j≤3N); and 
vj(t) (2N+1≤j≤3N) represents the proportion of EVs in Xj 

for the ‘DS→IS’ control.  
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Based on Eq. (7), Eq. (8), and Eq. (9), the EV flows of 
EVs in CS, IS, and DS are described by a unified PDE as 
given by (10).  

( ) = ( ) + ( ( ) + ( )) ( )t t t t t   X X U V XA B C      (10) 

where X(t)= [X1(t),…,X3N(t)]T; U(t)= diag([u1(t),…,u3N(t)]); 
U(t)= diag([v1(t),…,v3N(t)]); A is a (3N×3N) sparse constant 
matrix as given by (11); and both B and C are (3N×3N) 
constant matrices as given by (12).  
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where πcs=acs/Δs; and πds=ads/Δs.  
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where IN×N represents the (N×N) identity matrix; and 0N×N 
represents the (N×N) zero matrix.  

The dynamic plugging in and out have a direct impact 
on the EV flows as given by (13).  

   p in in in out out out( ) = ( )  - ( )t N f t N f tX X X     (13) 

where fin and fout are the probability density functions of 
EVs’ plugging in and out during a day, respectively; Nin 
and Nout are the predicted numbers of EVs plugging in 
and out during a day, respectively; and Xin and Xout 
indicate the EVs’ probability distributions among all SOC 
intervals when an EV plugs in and out, respectively.  

Then, the EV flows of centralized EVs are corrected 
by (14).  

p( ) = ( ) + ( ( ) + ( )) ( ) + ( )t t t t t t   X X U V X XA B C   (14) 

3.2 Regulation with PDE Model of EVs 

Based on the PDE model of centralized EVs in Eq. 
(14), we can discrete the PDE model as given by (15). 
Then, the total power of centralized EVs can be achieved 
by (16), and the regulation capacity of centralized EVs 
under different RMs can be achieved by (17).  
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where Pc2i, Pi2d, Pd2i, and Pi2c are the regulation capacity 

of centralized EVs under ‘CS→IS’, ‘IS→DS’, ‘DS→IS’, and 

‘IS→ CS’, respectively; Dc2i= [-pcs·11×N, 01×2N]; Di2d= [-
pds·11×2N, 01×N]; Dd2i= [01×2N, pds·11×N]; and Di2c= [01×N, 
pcs·11×2N].  

P*(t) is defined as the target regulation power of 
centralized EVs. Then, we tends to transform P*(t) into 
U(t) and V(t) and predict X(t+Δt) for centralized EVs. 
When P*(t)<0, U(t) is determined by (17) with the SOC 
sorting method and V(t)=0; and thus EVs with the lower 
SOC are more likely to be controlled for power increase. 
When P*(t)>0, U(t)=0 and V(t) is determined by (18) with 
the SOC sorting method; and thus EVs with the higher 
SOC are more likely to be controlled for power decrease.  
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where Xj:k represents the summation of [Xj,…,Xk].  

4. CASE STUDIES AND SIMULATION RESULTS 
The distributions of charging and discharging 

parameters of EVs are shown in Table I [6]. The 
distributions of traveling parameters of EVs are derived 
from [7]. The simulations are conducted with MATLAB 
installed on a laptop with 2.5 GHz i7-4710MQ CUP and 8 
GB RAM.  

Table I  Charging and discharging parameters of EVs 

Parameter Definition Distribution* 

pi,cs/pi,ds Rated C/D power (kW) F(5,7) 
ηi,cs/ηi,ds Rated C/D efficiency F(0.88,0.95) 

qi Battery capacity (kWh) F(20,30) 
*F(α,β) represents the uniform distribution within [α,β].  
 

Based on the distributions of EV parameters, the PDE 
modeling method is used to estimate the regulation 
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capacity of centralized EVs. Then, the centralized EVs are 
used to respond to the predefined target regulation 
power, and U(t) and V(t) are determined as the 
proportion of controlled EVs in each SOC interval.  

To verify the PDE modeling method for EVs’ control, 
each EV achieves its parameters from the distributions. 
Then, each EV is simulated to respond to U(t) and V(t) 
and achieve its regulation capacity individually. Then, the 
regulation capacity of centralized EVs is obtained by 
summing the regulation capacity of all EVs. This 
individual modeling method has been widely used in 
existing literatures.  

The predefined one-hour regulation power profile is 
shown in Fig. 2 [8]. When the centralized EVs respond to 
the regulation power profile, the base value for the 
regulation power profile is 75% the total regulation 
capacity of centralized EVs. The power profiles of 
centralized EVs with regulation service are shown in Fig. 
3. It is obvious that the PDE modeling method achieves 
the control result for centralized EVs with high accuracy 
compared with the individual modeling method.  

  
Fig 2  Target regulation power profile with 3600 samples 

  
Fig 3  Power profiles of centralized EVs (2,000 EVs and 30 

SOC intervals) 
Table II  Computational time under different EV numbers 

EV number PDE modeling Individual modeling 

500 0.00612 s 3.072 s 
1,000 0.00613 s 6.471 s 
1,500 0.00611 s 9.636 s 
2,000 0.00614 s 12.796 s 

 

Then, the average computational times for each time 
step are compared under different EV numbers. As 
shown in Table II, the computational time of the PDE 
modeling method is much shorter than that of the 
individual modeling method. With the increase of EV 

number, the computational time of the individual 
modeling method increases significantly. While with the 
PDE modeling method, the computational time is almost 
constant to a rather small value.  

5. CONCLUSIONS 
In this paper, a PDE modeling method is developed 

to estimate the regulation capacity and realize the power 
regulation service. Comparative simulation results 
validate that the PDE modeling method can achieve the 
high control accuracy with the much reduced 
computational time.  
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