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ABSTRACT 
  Energy system models need to adapt to better 

represent the new challenges brought by a changing 
scenario regarding technologies development and policy 
making. The mixed integer linear programming based 
approach proposed in this study wishes to handle the 
impacts of these changes on potential investments in 
distributed energy systems, whose design is to be 
determined for a time horizon lasting several years with 
parameters that might change even substantially in such 
timespan. In order to test the approach, a scenario 
representing a residential district with high penetration 
of electricity production from non controllable sources 
(photovoltaic panels) is used as a test case.  
The investment decision under examination is when to 
possibly deploy a battery system to deal with the 
production surplus generated during the day by the 
mismatch in production and demand. While electricity 
can be fed into the grid by taking advantage of a feed-in 
tariff scheme, this could not be the most economically 
favorable approach due to the dropping costs of the 
Lithium-ion battery systems in the near future.  
Results show that for the case study under analysis 
investing into batteries appears not convenient in terms 
of overall costs, although the best alternative solution 
provided with storage systems is only slightly more 
expensive.  
 
Keywords: energy transition, distributed energy 
systems, energy systems design, energy modeling  
 

NONMENCLATURE 
 

1. INTRODUCTION 
The energy transition entails significant and 

potentially disruptive changes to the current energy 

generation systems and distribution infrastructures, with 
such changes happening both on technologies and 
policies being adopted. Regarding the first aspect, 
technologies such as solar photovoltaic and Lithium-ion 
batteries are undergoing significant drops in capital costs 
[1,2]. On the policies side, many governments are  
already committing to a profound decarbonisation of our  
society and in some cases establishing new new 
regulations with this aim [3]. Finally a third trend lies in 
the decentralization of the energy production system, 
with smaller and more numerous energy conversion and 
storage systems placed close to final consumers, 
contrary to the large centralized production and 
distribution infrastructure that characterized energy 
fruition so far. The reasons for decentralization are 
multiple: from an increased reliability of the system to a 
design choice which is more tailored to the specific needs 
of the particular user, and ultimately to an easier 
management of non controllable energy generation 
sources. 

In this scenario designing an energy system becomes 
much more complex, due to the wide set of aspects that 
have to be taken into account: from the variety of 
technologies available to the external conditions such as 
availability of natural resources (solar radiation, wind 
etc.) and the access to energy markets which follow 
different tariff schemes [4]. All of these conditions might 
also change in time for the anticipated reasons: a 
technology could drop in cost due to technological 
advancement or economies of scale, or a new 
tax/incentive could intervene to change the convenience 
of certain resources in spite of others. To address these 
challenges, many modeling approaches have been 
proposed in the literature [5,6], each addressing more in 
detail one of the various aspects of distributed energy 
systems design [7]. 
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The mixed integer linear programming (MILP) based 
approach proposed in this study wishes to handle the 
dynamism of the external conditions that affect the 
optimal design of a distributed energy system providing 
the needs of a grid connected urban district, meaning a 
context where electricity and natural gas can be bought 
from the traditional centralized distribution 
infrastructures, but also where distributed systems can 
be purchased and deployed locally to meet the needs of 
the users. In particular, the approach incorporates the 
long-term temporal dimension of the problem, 
determining the optimal design over a timespan of 
several years, which represents the planning horizon for 
the district under analysis. This is achieved by modeling 
two different timescales: a smaller one to represent the 
day to day workings of the systems in the district, where 
the dispatch decisions are made on an hourly basis; and 
secondly a multi-year one where the actual investment 
decisions are made.  
To the best of the authors knowledge a similar approach 
has been only followed in [8] by integrating the 
EnergyPLAN simulation software [9] with an external 
optimization shell using a genetic algorithm to determine 
transition pathways for a national scale energy system. 
The solution approach proposed in this work is 
innovative both due to the implemented meataheuristic 
approach itself, and to the achievement of an optimal 
solution also on the operational phase, where the 
decision regarding the dispatch strategy of the energy 
systems are made for a district scale energy system.  

This is validated by analyzing a scenario representing 
a realistic residential user with a high non controllable 
electricity generation source, where the decision under 
analysis regards the adoption of an electricity storage 
system to be made under different feed-in tariff 
schemes. 

2. MILP AND SOLUTION ALGORITHM 
 

In general terms the problem can be described as the 

design of a distributed energy system in which the 

demand of different energy vectors must be fulfilled by 

scheduling the operational activities of the installed 

technologies. Decisions are taken in order to minimize 

the total costs sustained to meet the energy demands of 

the district within a fixed time horizon by a single entity 

(such as for example a local municipality or energy 

community). 

 

To solve this problem, the first idea was to expand the 

mathematical formulation presented in [10] by 

expanding the time horizon to a multi-year schedule but 

this would have led to an intractable MILP. The solution 

approach proposed in this paper relies on two phases 

designated to solve the problem in cyclical subsequent 

steps with a different time-scale and different purposes. 

This heuristic approach can overcome the intractability 

of the whole general formulation by relying on a two-

phase approach that can be described as follows, with a 

graphical representation of the proposed two-phase 

algorithm is shown in Figure 1: 

• Phase 1: a problem formulation M is used to 

solve the design and scheduling problem on the 

multi-year horizon and provides the set of 

technologies to install on each year. 

• Phase 2: a problem fomulation Mh is iteratively 

solved on subsequent one week long time slices 

with hourly resolution until the multi-year 

horizon is (partially) covered, each time taking 

into account only the technologies that results 

installed within the time interval. 

 In the first phase a MILP formulation (M) operates the  

decisions of investment into technologies within a multi-

year horizon in which boundary conditions may change 

and the lifecycle of systems is taken into account. Thus, 

the model uses binary variables to determine the choices 

regarding the purchase and installation of technologies 

within a particular year. Furthermore, additional binary 

variables are employed within constraints to ensure that 

a selected technology can be exploited only for a 

restricted timespan, that is coherent with the technical 

lifetime of the considered technology. Demand 

constraints are enforced by considering the annual 

aggregated demand for each energy vector: at each year, 

the total amount of each energy vector required by  the 

district has to be satisfied by means of the internal 

output produced by the deployed technologies, the 

energy stored within installed storage systems and the 

possible supply provided by external suppliers (e.g. 

national grid). Moreover, the potential surplus of energy 

can be converted into revenue by feeding it into the 

external grid in the case of the electricity vector.  
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Figure 1 – Graphical representation of the algorithm 

Continuous variables 𝑞 𝜖 ℝ+  and 𝑝 𝜖 ℝ+  are used to 

model the amount of input and output power of each 

conversion technology i. The output at each time step t 

of such technologies is assumed linear by imposing the 

following relation:  

p(i,k,t) = ωi × q(i,h,t) 

where k and h indicate the output and input vectors of 

energy, respectively, and ωi is the conversion efficiency of 
technology i. Moreover, the power generated by 

conversion technologies is constrained within maximum 
and minimum rated limits that, starting by the 

specifications of real systems, are set equal to annual 

aggregated values. For the case of renewables systems as 

the photovoltaic, the produced electric energy is 

considered linearly dependent by the efficiency of 

panels, the surface covered by the photovoltaic system 

and the aggregated exposition to solar radiation within 

each year. The specifications of the storage systems are 

modeled with the annual scaled storing capacity and a 
linear charging/discharging efficiency. 

Finally, M aims at minimizing the total costs objective 
function that accounts for the investment for purchasing 

and installing technologies at a certain year, their annual 

maintenance costs, the total expenses and revenues 

respectively related to the purchasing and selling of 
energies from/to external suppliers, the potential price 

for storing energy. An optimal solution of M describes a 

set of technologies that compose the design of the 
energy district, along with their scheduling on the annual 

perspective. However, the coarse grained schedule 
depicted by the solution can be affected by 

approximation errors that derives by moving from the 

real hourly scale on which the technologies operates, to 
the aggregated yearly scale in which strategical decisions 

are performed. 

Hence in the second phase, a second MILP (Mh) is 
exploited to optimize the scheduling of deployed 

technologies on a small subset of representative hours 

(hourly time horizon) of the year. In this way, the 

strategical decisions implemented on the annual horizon 

are linked with the schedule of operations defined by 

solutions built on the hourly horizon. Formulation Mh is 

based on a subset of constraints which compose M, that 

is the demand fulfilment inequalities and the constraints 
related to the operations and bounds of productive 

technologies and storage systems. The objective function 

minimizes the sum of the costs for external supplies and 

storing energy, minus the revenues for the amount of 

energy sold. 

Each solution obtained by Mh can result (i) unfeasible, 

if the demand of an energy vector cannot be met by the 

current layout of the district and cannot be supplied by 

external sources; (ii) feasible, with specific values of 

energy produced, purchased, stored and sold. In case (i), 

constraints are added to M to enforce that technologies 
and storage systems within the energy district are able to 

satisfy the maximum unmet hourly demands of energy 
vectors. In case (ii), constraints are added to M in order 

to reduce the amount of energy supplied by external 

vendors. This is done by enforcing that, for the hour in 
which the purchased quantity of external supply reaches 

the maximum value, a percentage θ of the corresponding 

demand is satisfied by the operations of technologies and 

storage systems. In both (i) and (ii) constraints consider 

the hourly demand, the technical parameters of the 

systems scaled to hourly resolution and are indexed with 

the year in which the hour that defines the unfeasibility 

or the peak of external supply belongs to. 

After that the definition of the hourly schedule is 

achieved for all the considered intervals of hours, a new 

overall solution is reached if no unfeasibility was 
detected. Its value is computed as the sum of the 
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investment and maintenance costs of the solution of M 

plus the total expenses related to the schedule of 
operations given by solutions of Mh. The algorithm then 

updates θ by a small step and iterates, starting again with 

the first phase. The whole procedure ends after a fixed 
number of iterations or if θ > 1 . The solution with 

minimum overall cost is selected as the best one. 

3. CASE STUDY AND RESULTS 
 

3.1 Case Study 

The proposed case study represents a residential district 
in the United States, whose demand is simulated by 
referring to a publicly available dataset containing the 
data regarding energy consumption and production by 
means of photovoltaic systems of 1000 households 
situated in Austin (Texas) [11] in 2013 with a high time 
resolution. The demand of a residential district has then 
been recreated by adding up the demands of 150 users 
and the same has been done for the production from the 
photovoltaic panels, in order to obtain the inputs for the 
model which are provided as a timeseries spanning a year 
with hourly resolution. The district is also considered to 
be connected to both an electricity and natural gas 
network distribution infrastructures, from which it can 
withdraw the respective commodities with a flat tariff 
scheme. 
In order to reduce the size of the problem only a 
representative subset of the yearly data has been used. 
This has been achieved by means of a k-means clustering 
procedure [12], from which a subset of 6 weeks has been 
selected using the average weekly demands (for each 
energy commodity) and the average PV system electricity 
production. Three of the selected weeks (winter, mid-
season and summer) are shown in Figures 2 to 5, where 
their solar radiation and their heating, cooling and 
electricity demands are respectively shown. 
Other than the PV system, which size is given as an input 
to the simulation, two more conversion technologies are 
considered within the analyses: a natural gas boiler to 
meet the heating demand and an electric split system to 
meet the cooling demand. 
Given the high electricity production achieved by means 
of the PV system, a surplus of production can occur and 
such surplus of electricity can either be fed into the local 
grid in exchange for a monetary compensation or be 
stored for consumption later in the day.  

 
 

 
Figure 2 – weekly heating demand 

 

 
Figure 3 – weekly cooling demand 

 

 
Figure 4 – weekly electricity demand 

 
Therefore, what we wish to investigate with this model is 
the optimal year (if one) to adopt a battery energy 
storage system in order to deal with the surplus of 
electricity generation, given a decreasing purchase cost 
driven by the market. The lowering in capital costs is 
simulated by referring to [13], with the obtained 
projected costs shown in Figure 6. The adoption of 
batteries is studied under different feed-in tariff 
schemes, with the highest retribution value set as half of 
the electricity purchase cost, this with a series of 
scenarios C*. Moreover the purchase of a battery is 
forced on the system through another set of scenarios CB, 
this in order to both analyze the gap in terms of costs with 
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the previous set, and test the validity of the dispatch 
strategy simulation. 
 
 

 
Figure 5 – production of the PV system already in place 

 

Figure 6 – Assumed costs of battery systems in the planning horizon 

3.2 Results 

The results obtained highlight that, in terms of the overall 
cost for the design and management of the energy 
district in the planning horizon of thirty years, the best 
solution has no battery installed for each considered 
feed-in tariff scheme. The electricity demand is met by 
means of the production of the photovoltaic panels and 
by purchasing from the national grid, with all of the 
surplus electricity sold to the grid to take advantage of 
the feed-in tariff. As expected the heating and cooling 
demand are met respectively by means of a boiler and an 
electric split system, which investment costs are renewed 
after their technical lifetime expires. 
Table 1 shows the overall costs for the best solutions for 
C* and CB. Moreover, the percentage gap (between the 
battery and non battery scenarios solution) of the overall 
costs is reported G. 
The overall system cost for the whole timespan 
considered (30 years) is 5744.64 k$ on average, with a 
slight decrease of 0.034% while moving from a feed-in 
tariff retribution value of 0.02 $/kWh to 0.04 $/kWh. On 
the other hand, the percentage gap G slightly increases 

from 0.69% to 0.71%. All the solutions provided by M 
show that the natural gas boiler and the electric split 
system are renewed after the nominal lifetime of twenty 
years, whereas CB has batteries of 50 kWh bought in the 
first and twenty-first years of the horizon. For different 
values of FIT, the solution for CB changes in the hourly 
schedule of the electrical energy. Comparing C* and CB, 
the gap results extremely limited to 0.70% on average, 
meaning that the adoption of a battery system is just 
slightly more expensive for the proposed test case. 
 

FIT [$/kWh] C∗ [k$] CB[k$] G 

0.02 5745.61 5785.39 0.69 

0.025 5745.12 5785.19 0.70 

0.03 5744.64 5785.00 0.70 

0.035 5744.15 5784.80 0.71 

0.04 5743.67 5784.60 0.71 

Average 5744.64 5785.00 0.70 
Table 1 – Best solutions for different feed-in tariff (FIT) schemes 

 
Even if the investment in batteries appears not balanced 
by the saving in terms of reduction of purchased 
electricity, practically speaking energy systems equipped 
with batteries are able to better absorb the uncertainty 
of the demand and a solution like the one CB can still 
appear a reasonable choice. In Figure 7 the dispatch of 
the electricity vector (in a CB scenario) for an example 
week is shown: it can be seen that surplus electricity is 
both stored and sold to the main grid. 
For this particular test case (which is a realistic purely 
residential user) it can be concluded that the adoption of 
a battery system to manage the surplus of electricity 
from the non controllable PV panels is not convenient 
from an economical standpoint even considered the 
dropping system investment costs. The situation might 
change if more PV panels are deployed or if the feed-in 
tariff compensation reduces.  
 

Figure 7 – Electricity dispatch over one week 
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The code was implemented in AMPL v.20180308 (MS 

VC++ 10.0, 64-bit) and experiments were performed on a 

Intelr Core i7-7500U 2.90 GHz with 16Gb RAM. All the 
MILP were solved by IBMr CPLEXr 12.9.0.0. To solve all the 
MILPs for all the iterations, the solution algorithm 
required on average 51.40 seconds. 

4. CONCLUSIONS 
 

In this paper, a MILP based approach for the design 
of distributed energy systems is presented. User 
demands of multiple types of energy commodities are 
considered and investment choices are performed under 
parameters variation within a multi-year time horizon. 
The proposed algorithm has two phases in which 
different timescales are considered: the first phase 
defines the layout of the energy district by taking into 
account the changes of technological parameters during 
the planning horizon; in the second phase, an hourly 
resolution is used to represent the day-to-day 
functioning of the systems to meet users energy 
demands. 
The case study analyzed in this paper represents a 
residential district with high renewable electricity 
generation. The adoption of battery system has been 
evaluated according to purchasing price variation that is 
supposed to decrease during time. 

Results showed that investing into batteries appears 
not convenient in terms of overall costs for this case 
study, although the best alternative solution provided 
with storage systems was only slightly more expensive 
and can represent a robust alternative under the 
uncertainty of the demand in practice. 

Future steps could further expand the modeling 
capabilities of realistic urban districts, by as example 
considering the spatial discretization in different groups 
of buildings or the stochastic nature of some of the cost 
and technical parameters considered in the analyses. 
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