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ABSTRACT 
Relative humidity (ɸ) is considered a major 

parameter during the designing of HVAC (Heating, 
ventilation, and air conditioning) systems. Generally, 
HVAC engineers use a psychrometric chart to observe 
and estimate the air quality parameters. Nevertheless, 
high skills are required to make rigorous and accurate 
reading from the psychrometric chart and the “human 
error” is an added factor that can lead to big disasters. 
Therefore, rigorous and user-friendly estimation of air 
quality parameters is still an ongoing issue. In this 
context, we are going to implement the state-of-the-art 
“Machine learning” technique to develop a simple, 
robust, and rigorous predictive tool for the estimation of 
relative humidity. A well-proven approach i.e., the 
random forest (RF) is employed to train the model for 
robust estimation. It was found that the mean absolute 
deviation was 54.3% lower than that of well-known 
ordinary least square (OLS) regression method. 
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NONMENCLATURE 

Abbreviations  

HVAC 
Heating, ventilation, and air 
conditioning 

IB data In-bag data 
OOB data Out of bag data 
ML Machine learning 
RF Random forest 
PC Psychrometric chart 
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MSE Minimum squared error 
OLS Ordinary least-square method 

Symbols  

Twb Wet-bulb temperature 
Tdb Dry-bulb temperature 
Twbd Wet-bulb depression 
ɸ Relative humidity 

 

1. INTRODUCTION 
The accurate estimation of relative humidity (ɸ) as a 

function of Twb and Tdb is of critical importance from 
domestic to industrial scale. Many processes involve air 
dependent operations such as air-cooled LNG plants [1], 
proton exchange membrane fuel cell [2], air conditioning 
[3], drying, weather forecasting, petrochemical 
industries, and cooling towers. Figure 1 is showing the 
some major air-involved industrial operations. 

 

 
 Fig 1 Air dependent industrial operations 

mailto:mynlee@yu.ac.kr


 2 Copyright © 2019 ICAE 

Hence, a rigorous and robust estimation of ɸ has an 
immense importance from daily life to industrial life. 
Several estimation tools and models [4–7] have been 
presented to predict the moist air properties including 
relative humidity, wet bulb temperature, and dew point. 
Most of them are so complicated due to number of 
parameters involved and thus difficult for process 
engineers to apply and get appropriate results. Eccel [8] 
estimated air humidity and tested the application of 
algorithms. They did not present any robust model to 
estimate the ɸ under different Tdb and Twb. Martínez et al. 
[9] estimated temperature and ɸ in the tobacco drying 
using a system based on Artificial Neural Network (ANN). 
However, some models are robust for example, Bahadori 
et al. [10] used wet-bulb depression (Twbd) and Tdb as 
independent variables to predict ɸ at standard 
atmospheric conditions using an Arrhenius-type 
asymptotic exponential function. They tested their 
model for ranges of Tdb: -10°C to 50°C and Twbd: 1°C to 
45°C. The major issue associated with their model is the 
complexity, mainly due to many (≥16) unknown 
constants; making it computationally expensive.  

This study proposes a state-of-the-art machine 
learning based predictive tool for rigorous and robust 
estimation of a major air property i.e., ɸ as a function of 
Twb and Tdb. A well-proven training algorithm i.e., random 
forest is adopted to train a model. The proposed 
predictive tool is developed in MATLAB 2018b. The 
performance analysis of the proposed estimation tool is 
compared with existing latest estimation models as well 
as standard psychrometric chart.     

2. MACHINE LEARNING BASED ESTIMATION TOOL  
Machine learning is a subset of artificial intelligence in 
which computers use statistical techniques to dig out 
essential information from the data without being 
explicitly programmed. In general way, machine learning 
(ML) helps to process the large massive data and make 
predictions within least amount of time.   

2.1 Proposed predictive tool 

Supervised learning random forest methodology is 
used for the prediction and causal inference. A brief 
structure of RF algorithm is shown in Figure 2.  

Random forest (RF) algorithm is one of the most 
promising machine learning algorithms to its simplicity, 
flexibility (used for both classification and regression), 
easy to use (even without hyper-parameter tuning) and 
give great results most of the time. As it already clears 
from its name that it creates forest to somehow random.  

The forest that is developed by it using the ensemble 
of decision trees (also known as Regression trees 
“CART”), usually trained by the “bagging” method. 
Bagging is a combination of bootstrap aggregating. The 
general concept behind the “bagging” or obviously 
behind the random forest algorithm is that it combines 
several decision trees and merge them together to 
produce a more rigorous and accurate prediction than a 
single classifier. The prediction phenomenon in RF 
algorithm is a combination of training and testing phases. 
In the training phase, a huge number of decision trees 
are constructed using multiple bootstrap samples (N) 
from the training data set. For each sample a regression 
tree (CART) is allocated which consist of node, branches 
and leaves. Objective function attribute is located on 
each node of the tree which is selected using a random 
subset from the data. Then the values of objective 
function are passed from branches to leaves using the 
logical principle “IF-THEN”.  

To build the proposed Random forests algorithm a 
sample dataset of 2616 observations were taken. The 
algorithm is then trained and tested in two different 
types of experiments. In first type of experiment, the 
algorithm is trained on whole sample data of 2616 
observations and tested on user defined test data and 
then validated with psychrometric chart. In second type 
of experiment, Out of sample data, 70% of data was 
randomized drawn with replacement for training 
purpose. Picking training data with replacement ensures 
the occurrence of variety of outputs with different 
results. The trained model was then tested on remaining 
30% of data. 

3. PERFORMANCE ANALYSIS 

Performance of RF algorithm mainly depends on the 
number of leaves grown on random number of trees. To 
find an optimal leaf size with minimum squared error 
(MSE) is a one critical step during the prediction adopting 
RF. In this study, a sensitivity analysis was performed to 
find out an optimal no. of leaves against various size of 
random trees corresponding to MSE. Figure 3 shows the 
analysis for the selection of optimal size of leaves. 
According to Figure 3, it can be seen that small size of 
leaves gives lower value of MSE upon increasing the 
number of trees. Therefore, the proposed study uses 5 
no. of leaves for the estimation of ɸ. It is found that MSE 
value is least if number of trees built on training data are 
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greater than 10. The red curve gives lowest MSE value 
that actually verifies our claim explained in above 
experiments. It is also obvious that the prediction 
accuracy curve remains smoothen with increasing 
number of trees in a forest.  

However, by increasing the number of trees in forest 
we develop maximum combination of observations in 
training data that affects the final prediction.  

 
Fig 3 Verification of optimal leaf by comparing mean 

squared error value for various no. of leaf 

Furthermore, the performance analysis of the 
proposed random-forest-based prediction was 
compared with standardized psychrometric chart and 
OLS regression method. Table 1 lists ɸ values calculated 
from RF and OLS in comparison with PC [11].  

Table 1 Comparison of calculated values with 
psychrometric chart and ordinary least sqaure method 

Tdb Twb  ɸPC ɸOLS ɸRF * ** 

(°C) (°C) % % % % % 

8 3 40.0 39.4 42.0 1.4 5.0 

-1 -5 25.0 32.2 25.7 28.6 2.9 

10 3 25.0 34.6 19.7 38.4 21.3 

19 13 50.0 47.7 50.1 4.6 0.1 

23 18 62.0 55.7 57.8 10.1 6.8 

39 30 52.0 54.0 54.1 3.8 4.0 

26 15 29.0 36.3 26.7 25.1 8.0 

29 19 39.0 42.2 41.1 8.3 5.3 

13 8 50.0 45.1 49.1 9.8 1.8 

Mean absolute deviation 13.4 6.1 

*= | ((ɸOLS – ɸPC)/ ɸPC)|; **= | ((ɸRF – ɸPC)/ ɸPC)| 
 

 
 

Fig 2 A brief structure of the Random Forest algorithm 
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According to Table 1, the highest absolute deviation was 
observed at same conditions (Tdb = 10°C and Twb = 3°C). At 
these conditions, the absolute deviations were found 
38.4% and 21.3% for OLS and RF models, respectively. 
Nevertheless, the minimum absolute deviation was not 
found at same conditions. For OLS case, the minimum 
absolute deviation was 1.4% at 8°C dry bulb temperature 
and 3°C wet-bulb temperature. Whereas, in the case of 
RF, 0.1% minimum absolute deviation was observed at 
Tdb = 19°C and Twb = 13°C.    

4. CONCLUSIONS  

This study has presented the machine-learning 
based estimation model for the prediction of relative 
humidity and wet-bulb temperature. A random forest 
algorithm has examined to train the model for rigorous 
estimation of ɸ. The ɸ has estimated using classical OLS 
method and proposed RF-based prediction model. OLS 
method gives ɸ values with 13.4% mean absolute 
deviation that is 54.3% higher than that of estimated 
from RF-based estimation model. It has observed that by 
increasing the training dataset can also affect the 
prediction performance but the addition of incorrect 
training sets in the training data may affect the 
performance, reversely. The examination of the 
correlation of each independent and the dependent 
variables helps in deciding the preferential predictor that 
further directs for the consequence of the inclusion of 
the datasets of the respective predictors. This work 
provides help to process engineers in designing of 
different industrial operations such as drying, cooling, 
and heating.  

ACKNOWLEDGEMENT 

This work was supported by the Basic Science Research 
Program through the National Research Foundation of 
Korea (NRF) funded by the Ministry of Education 
(2018R1A2B6001566) and the Priority Research Centers 
Program through the National Research Foundation of 
Korea (NRF) funded by the Ministry of Education 
(2014R1A6A1031189).  

REFERENCE 
[1] Qyyum MA, Minh LQ, Ali W, Hussain A, Bahadori 

A, Lee M. Feasibility study of environmental 
relative humidity through the thermodynamic 
effects on the performance of natural gas 
liquefaction process. Appl Therm Eng 2018;128. 
doi:10.1016/j.applthermaleng.2017.08.090. 

[2] Jeon SW, Cha D, Kim HS, Kim Y. Analysis of the 
system efficiency of an intermediate temperature 
proton exchange membrane fuel cell at elevated 
temperature and relative humidity conditions. 
Appl Energy 2016;166:165–73. 
doi:https://doi.org/10.1016/j.apenergy.2015.12.
123. 

[3] Lim DK, Ahn BH, Jeong JH. Method to control an 
air conditioner by directly measuring the relative 
humidity of indoor air to improve the comfort and 
energy efficiency. Appl Energy 2018;215:290–9. 
doi:https://doi.org/10.1016/j.apenergy.2018.02.
004. 

[4] Stull R. Wet-Bulb Temperature from Relative 
Humidity and Air Temperature. J Appl Meteorol 
Climatol 2011;50:2267–9. doi:10.1175/jamc-d-
11-0143.1. 

[5] Sadeghi S-H, Peters TR, Cobos DR, Loescher HW, 
Campbell CS. Direct Calculation of 
Thermodynamic Wet-Bulb Temperature as a 
Function of Pressure and Elevation. J Atmos 
Ocean Technol 2013;30:1757–65. 
doi:10.1175/JTECH-D-12-00191.1. 

[6] Zhang W, Ma H, Yang SX. An Inexpensive, Stable, 
and Accurate Relative Humidity Measurement 
Method for Challenging Environments. Sensors 
(Basel) 2016;16:398. doi:10.3390/s16030398. 

[7] Brooker DB. Mathematical Model of the 
Psychrometric Chart. Trans ASAE 1967;10:558–
60. doi:https://doi.org/10.13031/2013.39729. 

[8] Eccel E. Estimating air humidity from temperature 
and precipitation measures for modelling 
applications. Meteorol Appl 2012. 
doi:10.1002/met.258. 

[9] Martínez-Martínez V, Baladrón C, Gomez-Gil J, 
Ruiz-Ruiz G, Navas-Gracia LM, Aguiar JM, et al. 
Temperature and relative humidity estimation 
and prediction in the tobacco drying process 
using artificial neural networks. Sensors 
(Switzerland) 2012. doi:10.3390/s121014004. 

[10] Bahadori A, Zahedi G, Zendehboudi S, Hooman K. 
Simple predictive tool to estimate relative 
humidity using wet bulb depression and dry bulb 
temperature. Appl Therm Eng 2013;50:511–5. 
doi:https://doi.org/10.1016/j.applthermaleng.20
12.07.033. 

[11] Kutz M. Handbook of Environmental Engineering. 
John Wiley & Sons; 2018. 

  


