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ABSTRACT 

Internal short circuit (ISC) plays an important role in 
lithium-ion battery safety accidents. However, the 
mechanism of how ISC triggers thermal runaway is still 
unclear yet. We implant the shape memory alloy device 
into jelly-roll to trigger ISC and analyze the thermal and 
electrical behaviors under different ISC types and SOC 
variance conditions. The ISC resistance is identified by 
using the no-salt battery based on the electrochemical 
impedance spectroscopy tests. The proposed resistance 
identification method benefits further ISC mechanism 
and modelling research. 
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1. INTRODUCTION 
Recently, the safety accidents of lithium-ion 

batteries fire and explosion occurred frequently, with the 
large-scale application of lithium-ion batteries in 
electronics, electric vehicle and energy storage. The 
internal short circuit is the potential ‘cancer’ of battery 

safety[1]. The series accidents of Samsung Galaxy Note7 
were finally confirmed that the high welding burrs on the 
positive electrode penetrated the insulation tape and 
separator inducing ISC, then the heat generation from 
ISC triggered the chain reactions of thermal runaway 
(TR)[2].  

Several methods are proposed to reveal the 
mechanism of ISC, including 1) using mechanical 
load[3,4]; 2) using electrical abuse[5]; 3) introducing 
devices controlled by temperature, such as phase change 

 
Fig 1 ISC triggering tests 

 a) Schematic diagram of ISC triggering method (Al-An type 
ISC as the example); b) Structure of SMA device;  

c) Experimental bench. 
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materials[6], low melting point alloy[7], shape memory 
alloy (SMA)[8]; 4) triggering ISC by metal contaminants 
during cycling[9].  

In this work, we used the SMA ISC triggering method 
to study the thermal and electrical features of ISC under 
SOC variance and different ISC type conditions. 
Moreover, electrochemical impedance spectroscopy 
(EIS) of no-salt batteries was used to analyze the 
resistance of ISC based on the electrochemical 
equivalent circuit (EEC). 

2. EXPERIMENTAL 

2.1 ISC triggering tests with SMA devices 

The thermal and electrical behaviors of ISC is 
studied on 1Ah pouch batteries with cathode material of 
LiNi1/3Co1/3Mn1/3O2 and anode material of graphite by 
introducing SMA devices. The SMA devices made by Ni-
Ti alloy were implanted into jelly-rolls. The tip of the SMA 
device bent up and penetrated the separator to make a 
contact between cathode and anode when the 
temperature raised above 40oC, as shown in Fig 1. A hot 
wind gun was used to heat the battery to the triggering 
temperature. There are four types of ISC[10]: 1) Cathode 
material-anode material (Ca-An), 2) Cathode material-
negative current collector copper (Ca-Cu), 3) Positive 
current collector aluminium-copper (Al-Cu), 4) 
aluminium-anode material (Al-An). In this work, batteries 
#1~#4 were triggered ISCs of different types at 100% 
SOC, whereas #4~#7 were triggered ISCs at different 

SOCs with the same type ISC Al-An. The voltage and 
central temperature of the battery surface were 
recorded with an interval of 1s.  

2.2 No-salt batteries EIS tests with ISC 

 The 1:1:1 EC:DMC:EMC electrolyte without LiPF6 
replaced the normal electrolyte 1M LiPF6 in 1:1:1 
EC:DMC:EMC used in 2.1 to fabricate no-salt batteries. 
Batteries #8~#10 were the no-salt batteries without SMA 
devices, whereas the #11~#13 were the no-salt batteries 
with SMA devices made by the same jelly-roll from 2.1.  

There’s no ISC current and heat generation of no-salt 
batteries theoretically after triggering ISC so that EIS 
tests could be conducted with safety. EIS was 
investigated with an electrochemical workstation from 
Shanghai Chenhua. The frequency range was 100 kHz to 
10 mHz with an excitation voltage of 5 mV at ambient 
temperature 25oC. 

 
Fig 2 Voltage and temperature results of ISC tirggering tests 

a) #1 Ca-An type ISC at 100% SOC; b) #2 Ca-Cu type ISC at 100% SOC; c) #3 Al-Cu type ISC at 100% SOC;  
d) #4 Al-An type ISC at 100% SOC; e) Comprasion results of #4~#7 at 100%, 75%, 50%, and 25% SOCs of Al-An type ISC. 
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Fig 3 Thermal runaway with eruption of Al-An #4 

 a) White smoke and sparks; b) Black smoke and sparks. 

a) b)
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3. RESULTS AND DISCUSSIONS 

3.1 ISC triggering tests with SMA device 

Fig 2 illustrates the results of ISC triggering tests. Ca-
An #1 and Ca-Cu #2 were safe that the temperature 
decreased immediately after closing the hot wind. For 
these two types, the slow decline of voltage indicated the 
large ISC resistance and low heat generation. For Al-Cu 
#3, the voltage dropped down to 0V, whereas the 
maximum surface temperature is 105.7oC both 
appearing in 18s after ISC. Battery #3 swelled up but 
didn’t erupt after ISC, thereby no fire or explosion. 
Conversely, Al-An 4# triggered TR with severe explosion 
after ISC as shown in Fig 3. The voltage of 4# dropped 
down to 0V in 3s after ISC and the maximum 
temperature 396.7oC appeared in 26s. As the 
consequence, Al-An type ISC is the most dangerous that 
must be inhibited during life cycle; Al-Cu type ISC has 
better thermal conductivity than Al-An mitigating the risk 
of TR, but the severity is influenced by the thermal 
stability of electrode materials.  Ca-An and Ca-Cu type 
ISCs have poor electrical conductivity resulting in large 
resistance. Hence, how to identify these two type ISCs 
during practical application is necessary.  

ISC behaviors of the most dangerous type Al-An 
under SOC variance are shown in Fig 2 e). The common 
feature is that the voltage dropped down sharply to 0V 
expect #7 to 0.12V at 25% SOC, indicating the resistance 
was equivalent. Conversely, the maximum surface 
temperatures of #4~#7 were 396.7oC, 367.4 oC, 113.3 oC 
and 99.9 oC obvious nonlinear relationship. #4 and #5 

(group A) triggered severe TR, but the phenomenon of 
#6 and #7 (group B) was similar to Al-Cu #3 only gas 
generation, not eruption. The Joule heat of ISC relates to 
ISC resistance and the electric energy of battery, whereas 
the ISC resistance and heat dissipation conditions are 
similar for group A and B. If the local materials are heated 
to the temperature of TR chain reactions, there will be 
severe TR like group A. On the contrary, the heat 
accumulation of ISC doesn’t trigger TR at low SOCs, 
resulting in low temperature and higher safety.  

The ISC behavior for a specific type battery is the 
result of a comprehensive effect of ISC resistance (energy 
release rate), ISC type (heat dissipation rate) and SOC 
(total power energy). ISC location also influences the 
behaviors and will be investigated in future work. 

3.2 No-salt batteries EIS tests with ISC 

Table 1 EIS fitting results of no-salt batteries 
 Rohm/Ω WoR/Ω WoT/F WoP RISC/Ω 

#8 0.82 3.18 0.41 0.43 ∞ 

#9 0.81 3.09 0.41 0.43 ∞ 
#10 0.76 3.21 0.41 0.43 ∞ 

# 0.80 3.16 0.41 0.43 ∞ 

#11 0.80 3.21 0.42 0.44 57.39 

#12 0.81 3.12 0.42 0.43 40.69 

#13 0.81 3.22 0.40 0.42 6.75 
Remark: # is the average results of #8～#10. 

 
Fig 4 Impedance spectra results of no-salt batteries: 

symbols represent measured data, the solid line represents 
the fit. 
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Fig 5 impedance spectra under different value of RISC. 
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Fig 4 and Table 1 shows the measured and fitting 
results. The electrode reaction is controlled by the 
diffusion process using the no-salt electrolyte. Hence, 
the EEC is the series circuit of the ohmic resistance (Rohm) 
and the Warburg diffusion element (WDE), where the ISC 
resistance RISC is infinite when there’s no ISC of #8~#10. 
The spectra are linear and achieve high repeatability, at 
low frequency. 

When the ISC is triggered, there is an electronic 
channel inside the battery, described by the parallel 
circuit of ISC resistance of #11~#13. According to Table 1, 
the parameter variance of Rohm and WDE is limited in 
±10%. As a consequence, this EEC could be used to 
describe the physical process of the battery without LiFP6 
and ISC process and helps distinguish the ISC resistance. 

The impedance spectra under the different value of 
RISC using the average parameters of #8~#10 are studied 
as shown in Fig 5. The resistance is higher, the spectra 
are more linear at low frequency, indicating that the 
main control process is the diffusion. As the internal 
resistance decreases, the spectra gradually bend 
downward.  

The resistance of ISC has a great influence on the ISC 
electrical and thermal characteristics. This method helps 
to identify the specific resistance value of different ISC, 
benefiting to ISC modelling. 

4. CONCLUSION  
We implant the shape memory alloy device into 

jelly-roll to trigger ISC and analyze the thermal and 
electrical behaviors of ISC under different ISC types and 
SOC variance conditions. Al-An type ISC is the most 
dangerous ISC, whereas Ca-An and Ca-Cu type ISCs with 
high resistance inducing slow voltage decline are the 
potential threats of battery safety. We reveal that the ISC 
behavior for a specific type battery is the result of a 
comprehensive effect of ISC resistance, ISC type, ISC 
location and SOC. The boundary condition of ISC 
triggering TR by experimental and modelling need 
further research. 

The ISC resistance is identified by using the no-salt 
battery based on the electrochemical impedance 
spectroscopy tests. This proposed method benefits 
further ISC modelling research and has the potential to 
ISC diagnosis. 
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