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ABSTRACT 
 The growing global population and the resulting 

excess use of fossil fuels have brought the urgency for 
climate change mitigation leading to focus on renewable 
energy resources. Biomass is one of the earliest natural 
sources of energy, which has the potential to substitute 
for primary energy resource. However, commercial 
production of biofuel is still constrained by uncertainties 
such as biofuel demand. In this study, a two-stage 
stochastic mixed integer linear programing is formulated 
for biofuel supply chain based on macroalgae resource 
under uncertainties. The objective function in this 
formulation is total annual cost to be minimized. The 
approach is illustrated through a bioethanol supply chain 
case study in Korea, where macroalgae are among the 
dominant biomass resources. 
 
Keywords: biofuel supply chain, uncertainty, two stage 
stochastic programing, sustainability, macroalgae  

1. INTRODUCTION 

Concerns about climate change, energy security, and 
the diminishing supply of fossil fuels have encouraged 
the development of biofuel industry[1]. First generation 
biofuel from food crops and second generation biofuels 
from lignocellulosic biomass have largely accounted for 
the most of the biofuel production [2].  

However, the production of biofuels from these 
sources has led to a series of problems, such as rising 
food prices and competition for agricultural land[1]. 
These problems have raised interest in developing 
biofuel from non-edible biomass resources. Using 
macroalgae can be considered an alternative to these 
issues since: 1) macroalgae grow in marine systems and 
also very efficient in utilizing the nutrients from waste 

water; 2) they mainly consist of carbohydrates, which are 
good candidates for biofuel production like ethanol[3]. 
In the biofuel supply chain (BSC), biomass is transported 
from supply through facilities where it undergoes various 
processes including cultivation, harvesting, storage, 
conversion to biofuel, and distribution to demand zones. 
Efficiency of this chain is essential for biofuel 
development projects. Indeed, as the biomass itself is 
relatively cheap, the economic equilibrium of the whole 
system critically depends on logistic costs[4,5]. 
Therefore, the main objective in designing the BSC is to 
optimize the total cost for managing of the supply chain.  

Another main challenge comes from uncertainties 
inherent in biomass supply, demand, production, 
transportation, operation, and prices of BSC[6]. There 
are several review papers focused on uncertainties in 
these chains[7]. Based on those investigation biomass 
supply and biofuel demand parameters are the most 
important uncertain parameters in BSC that are 
considered in this work. In this paper, we developed two 
stage stochastic mixed integer linear programming for 
macroalgae-based biofuel supply chain management 
(MBBSCM). To the best of our knowledge, this study is 
the first study applying biomass supply and demand for 
MBBSCM.       

2. MACROALGAE-BASED BIOETHANOL SUPPLY CHAIN 
MANAGEMENT(MBBSCM) 
This paper deals with the strategic design and 

planning of stochastic MBBSCM in multiple periods. As 
shown in Fig 1 the structure includes nodes referring to 
processes such as harvesting sites, dryers, refinery, 
biomass storage, and biofuel storage. Also, trucks, trains, 
ships, or planes can transport biomass or biofuel 
between nodes shown by arrows.  
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Fig 1 Underlying structure of the biofuel supply chain 

network. 

First, the deterministic model will be described 
briefly and then focus on stochastic equations to 
consider uncertainties. At harvesting sites, available 
amount of biomass is given for each site and each time 
period and the amount of harvesting is considered as a 
decision variable. It should be also noted that fresh 
macroalgae harvested have considerable amount of 
water (85 wt. %). Therefore, biomass should be dried for 
more efficient transportation and storage[8]. Hence, 
biomass feedstock is shipped from a harvesting site to a 
dryer directly. The location of dryer can be optimized by 
the optimization model. To increase the operational 
flexibility of MBBSCM, there is no constraint set to affect 
the potential location of a dryer. To propose a flexible 
model for MBBSCM, there is possibility to use dryers with 
different technologies and capacities with respect to the 
amount of feedstock. The extra macroalgae dried and 
bioethanol produced are stored in biomass and biofuel 
storage, respectively.  

The costs of biomass conversion are given for each 
potential biorefinery at various capacity levels. The 
process models of biorefinery is very complicated; 

however, to simplify the MBBSCM model and decrease 
calculation load, we have modified biorefinery models 
developed in [9]. Finally, the biofuel demand in each time 
period for each demand zone is given. 

3. MBBSCM MODELLING  
A mixed integer linear programing (MILP) is 

developed incorporating biomass supply and biofuel 
demand uncertainties.  

In problems of stochastic optimization of supply 
chain, the planning decisions is strategic and thus made 
before dealing with uncertainties in first stage. On the 
other hand, since operational decisions are more 
flexible, they are made in the second stage[10]. In our 
work, location of technologies (integer variable) and 
capacity expansion of them are first-stage decision 
variables. The second stage covers all operational 
decision variable (continues variable) including: amount 
of biomass and biofuel for transportation, biomass 
supply and biofuel production.  

It is known that this uncertain data in this model 
cannot be solved with continuous distribution. Thus, 
discrete distribution should be used for uncertain 
random parameters[11]. Both the uncertanitiy of 
biomass supply and biofuel demand are represented by 
three possible value: low, medium with equal 
probability. Then the model can be expressed as: 

𝑀𝑖𝑛 (𝐶𝑜𝑠𝑡) = 𝐶𝑜𝑠𝑡1𝑠𝑡 + 𝑝𝑟𝑏𝑠 × 𝐶𝑜𝑠𝑡2𝑛𝑑 
𝐶𝑜𝑠𝑡1𝑠𝑡 = 𝐶𝑓𝑥 + 𝐶𝐷 +  𝐶𝑀𝑆 + 𝐶𝐹𝑆 

𝐶𝑜𝑠𝑡2𝑛𝑑 = 𝐶𝑂𝑀 + 𝐶𝐵𝑇𝑅𝑆 + 𝐶𝐸𝑇𝑅𝑆 + 𝐶𝐼𝑀 
where scenario-based 𝐶𝑜𝑠𝑡 is total annual cost with the 
probity 𝑝𝑟𝑏𝑠  associated with each random feedstock 
yield scenario s calculated by two stages: 𝐶𝑜𝑠𝑡1𝑠𝑡 and 
𝐶𝑜𝑠𝑡2𝑛𝑑. The location of technologies and their capacity 
are considered in first stage where capital costs of 

biorefinery (𝐶𝑓𝑥), dryer (𝐶𝐷), biomass storage (𝐶𝑀𝑆), and 

biofuel storage ( 𝐶𝐹𝑆 ) are included in 𝐶𝑜𝑠𝑡1𝑠𝑡 . The 
second stage covers all operational decision variables 
(continuous variables) where 𝐶𝑂𝑀, 𝐶𝐵𝑇𝑅𝑆, 𝐶𝐸𝑇𝑅𝑆 and 
𝐶𝐼𝑀  represent operation and maintenance cost of 
biorefinery, cost of biomass transport, biofuel transport 
and import, respectively. 

Sources of uncertainties in biofuel supply chain have 
been investigated in several works where they were 
classified by type of uncertanitiy[6,12]. In order to find 
the probability of each scenario, one can focus on source 
of uncertainties[13] or assume random probability[10]. 
In this work, we assume random and equal value for both 
biofuel demand and biomass supply.   

4. CASE STUDY    
The performance of the proposed stochastic models 

is demonstrated through a case study developed for a 
conceptual biofuel supply chain in South Korea. The 
99.6% of seaweed aquacultured produced by quantity in 
south east Asia[14]. Saccharina japonica that one of the 
main seaweed crops[15] is considered in this study as 
biomass feedstock.    

Table 1 Probability of scenarios. 

Scenario 𝑝𝑟𝑏𝑠 
Biomass 

supply coef. 
Biofuel 

demand coef. 

S1 0.1 0.9 0.9 
S2 0.1 0.9 1 
S3 0.1 0.9 1.1 
S4 0.1 1 0.9 
S5 0.1 1 1 
S6 0.1 1 1.1 
S7 0.1 1.1 0.9 
S8 0.1 1.1 1 
S9 0.1 1.1 1.1 
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Korea consists 15 provinces/districts (excluding 
Jeju), which has specific amount of biomass supply and 
biofuel demand. Total 9 scenarios (Table 1) are 
developed in this work to account uncertainties in the 
biofuel supply chain in Korea. In each scenario demand 
and supply are changed by ±10 %. All provinces/districts 
are considered a potential location of facilities. The time 
horizon is decomposed into a finite number of time 
periods. I.e., the time horizon is one year, and the time 
period is fixed to one month to be coherent with the 
data. In this study we consider 5% of current gasoline 
usage replaced by ethanol (E5). The available amount of 
biomass and biofuel demand are shown in Fig 2. 

  
    (a)biofuel demand      (b) resource of biomass   

Fig 2 distribution of biomass resources and biofuel demand.  

The biorefinery technology considered in this work is 
based on the superstructure developed in [16] with 
capacity ranges of 0–7.5 million gallons per year (MGY), 
7.5–15.5 MGY, 15.5-23 MGY, 23–31 MGY and 31– 38 
MGY. The dryer used is bed drying, which decrease the 
moisture of wet biomass from 85% to 15 %[1].           

5. RESULTS     
The proposed model with 180 binary variables, 

29,700 integer variables, and 58,239 continuous 
variables was coded in in GAMS software and solved by 
DE solver on a 3.00 GHz processor.  

In this work all scenario has same probability and 
the expected cost of province-level supply chain is 
$488,265,700. We called S3 as worst scenario since the 
biomass supply is lowest and biofuel demand is the 
highest rate. Also, the highest coefficient of biomass 
supply and the lowest biofuel demand belong to S7 
called best scenario.  

The amount of biofuel demand based on E5 can be 
met in the worst scenario is 73 percent and the rest of 
demand should be imported from overseas. For the best 
scenario 10 % of biofuel produced is extra and can be 
exported. 

 
 

Table 2 Number of facilities needed for each scenario. 

 
7.5 

MGY 
15.5 
MGY 

23 
MGY 

31 
MGY 

38 
MGY 

S1 9 0 0 0 6 
S2 9 0 0 0 6 
S3 9 0 0 0 6 
S4 8 0 0 0 7 
S5 8 0 0 0 7 
S6 8 0 0 0 7 
S7 8 0 0 0 7 
S8 7 0 0 0 8 
S9 7 0 0 0 8 

(a) Refinery 

 325  
DTPY* 

2,602 
DTPY 

20,817 
DTPY 

1,332,308 
DTPY 

S1 1 3 4 1 
S2 2 4 3 1 
S3 1 3 4 1 
S4 2 4 3 1 
S5 1 3 5 1 
S6 2 4 3 1 
S7 2 3 4 1 
S8 2 3 4 1 
S9 2 2 5 1 

(b) Dryer 

* dry tons per year 

The cost of biofuel supply chain highly depends on 
building biorefinery with fixed capacity and transporting 
biomass and biofuel. Therefore, choosing the best 
location for facilities is the main goal of this paper. Table 
2 shows the number facilities needed in each scenario. 
As shown in Table 2(a) all scenarios, biorefineries is built 
in all providences/districts. However, since macroalgae 
can be harvested in coastal region, they have the higher 
capacity refinery. 

6. CONCLUSION  
Considering uncertainties in biofuel supply chain is 

vital to the development of biofuel industry. In this study, 
we have developed an optimization approach for 
MBBSCM in Korea. A two-stage mixed-integer linear 
programing (MILP) problem considering uncertainties in 
biomass supply and biofuel demand was developed in 
order to consider the main characteristics of biofuel 
supply chains. The MILP model concurrently predicts the 
optimal network design, facility location, capital 
investment and inventory control. To the best of our 
knowledge, this study is the first study applying two main 
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uncertainty characteristics of macroalgae-based biofuel 
supply chain. The proposed model can be applied to 
large-scale biofuel production under biomass supply and 
biofuel demand.  

Focusing the source of uncertainties sources and 
their effect on the model could be a possible extension 
of this work. Moreover, the two-stage stochastic 
programming method lacks the capability of the 
sequential decision-making process based on evolving 
uncertainties over time, multistage stochastic 
programing highly recommended for extension of this 
work. 
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