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ABSTRACT 
 False data injection attack (FDIA) invades the 

automatic generation control (AGC) system and 
degrades the control performance, which may cause 
unstable operation of power system. Fast and accurate 
detection can help to reduce the impact of attacks. This 
paper presents a novel detection method, combining 
local predictor (LP) and support vector machine (SVM), 
for the FDIA of AGC system. The effects of different types 
of cyber attacks on AGC system are analyzed. The LP is 
applied to identify the local pattern of each point of 
historical data, and it extracts the information in a high 
dimension space with accurate predictions. The similar 
data obtained from LP are adopted to train the SVM, and 
the LP-SVM algorithm is presented to detect the attacks 
of AGC system. Simulation studies undertaken on a 
single-area AGC system reveal that the LP-SVM method 
outperforms traditional SVM and naive Bayes (NB).  
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1. INTRODUCTION 
Today’s power grids are tightly connected through 

various communication systems, which makes the 
interconnect protection, monitoring and control 
intimate. One of the communication-related functions is 
the automatic generation control (AGC), which is 
performed by the supervisory control and data 
acquisition (SCADA) center [1]. The SCADA center of the 
power grid uses remote measurement devices and 
communication channels to collect useful data [2]. The 
power system controller of the SCADA center processes 

the collected data and sends the required commands to 
the relevant actuators. The AGC is a supplementary 
controller for the load frequency control (LFC) system, 
and it is the only automatic closed loop between the 
network and physical parts of the grid [3]. AGC improves 
the efficiency and quality of LFC operation. AGC is 
another target for economical scheduling of 
supplementary LFC loops. However, the dependence of 
AGC on communication makes the LFC system more 
vulnerable to the cyber attack.  

False data injection attack (FDIA) is one of the most 
common types of cyber attacks on power grid, which 
combats AGC systems and may cause unstable of the 
power grid. The AGC system can locate FDIA and other 
types of intrusions through error data injection, such as 
denial of service, malware injection, spoofing and 
internal attacks [1]. In recent years, various studies have 
been conducted on the vulnerability of power systems to 
cyber attacks. For instance, in [4], the author designed a 
method that leverages the redundancy of measurement 
to mitigate the impact of an identified attack. Reference 
[5] discussed the effects of resonance attacks which is 
more complex FDIA, and it studied the performance of 
the LFC system. Reference [6] pointed out that 
destroying the stable power system through attacking 
the AGC system and proposed a program which is based 
on feedback linearization for detecting the optimal 
attack.  

As to the issues, this paper presents a novel data-
driven model for detecting attacks on AGC system, and it 
is based on local predictor (LP) and support vector 
machine (SVM). The SVM is a machine learning method 
based on statistical theory. The LP is applied to set up 
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training set from part of historical data and it identifies 
local pattern for each point. What is more, the LP can be 
displayed in a high-dimension space, it is obvious and 
intuitive. 

Firstly, the dynamic model of a single-area LFC is built 
on the MATLAB/Simulink platform, and then various 
configurations of the model according to the various 
faults are set that may occur in an actual system. Thirdly, 
a series of fault signals are generated, which provide 
reasonable and sufficient data for the design of feature 
extraction and attacks detection methods. Lastly, the LP-
SVM is tested in the dynamic model under different 
attacks and the results are compared with the SVM and 
naive Bayes (NB). 

2. DYNAMIC MODEL OF LFC SYSTEM  
Fig. 1 shows the dynamic model of a single-area LFC. 

It consists of three modules which are governor, turbine 
and generator respectively [7]. The generator correction 
is called area control errors (ACE) which is used for 
balancing the area. The proportional integral (PI) 
controller is the load frequency controller used in the 
current industry and is included in the model. 

2.1 Structure of the LFC system 

As shown Fig. 1, to model the dynamic 
characteristics, their transfer functions can be expressed 
as following [8], [9]. The relation between the frequency 

deviation f  and power output vP  is 
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where K  contains PK  and IK , they represent 

proportional and integral gains respectively. The transfer 
function of a steam non-reheat turbines is 
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where mP  is the deviation of the generator 

mechanical output and chT  is the time constant of the 

turbine. The rotor and load can be used for the load 
frequency control. 

Deduced as above, the dynamic model of one-area 
LFC system can be described as 
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and dP , M , D , gT  and u  denote the load, 

moment of inertia of the generator, generator damping 
coefficient, time constant of the governor, time constant 
and control signal of the turbine, respectively. In single-
area LFC system, the ACE is defined as 

            ACE f=                   (11) 
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Fig. 1 Block diagram of a single-area LFC system. 
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where   is frequency bias factor. 

2.2 Type of Attack 
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Fig. 2 The local neighbours are used in LP. 

As shown in the Fig. 1, 1a  is the transmission 

channel of attack measurement data and 2a  is the 

transmission channel of attack control command. In the 
smart grid, false data injection is one of the most 
widespread types of attacks. Attackers inject different 
erroneous data on different signals on the 
communication system and lead to erroneous decisions, 
which results in huge damage to power system. The 
former model of the attack template discussed is 
presented in the previous subsection. In this subsection, 

we define several types of attack, t  is time, at  

represents the attack period and meaZ  is the 

measurement and reaZ  is the real value. 

2.2.1 Pulse attack  

During the entire attack period, the measurements are 
set to higher/lower values. This type of attack modifies 
the measurement by a short pulse of time interval with 

attack parameter pa . 

2.2.2 Ramp attack  

Ramp attacks modify measurement by adding ra t , a 

ramp function is increase/decrease over time gradually, 

where ra  represents the factor of ramp attacks. We 

can define a system of equations 
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2.2.3 Scaling attack  

The scaling attack modifies the measurement 
higher/lower values by scaling attack parameters, which 

is sa . We define a system of equations 
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3.  LOCAL PREDICTOR AND SUPPORT VECTOR 
MACHINE  

In this paper, the fault diagnosis method based on LP 
and SVM is proposed. The LP is applied to set up training 
set from part of historical data and it identifies local 
pattern for each point. What is more, the LP can be 
displayed in a high-dimension space, it is obvious and 
intuitive.  
3.1  Structure of the LFC system 

LP is different from global prediction, which selects 
partial historical data to set up training set. LP distinguish 
each point in the local pattern. This is the only one point 
and can be demonstrated in a more obvious way and a 
high dimensional space. Obviously, LP has a more 
purposeful modeling level and results in higher precision 
than global prediction. 
3.1.1 Principle of Local Prediction 

Take the three-dimensional phase space as an example. 
The mechanism of the local predictor is shown in Fig. 2. 
The original time series is placed in a three-dimensional 
phase space to form a batch of samples. LP selects a 
group of nearest neighbours, which are defined as local 
neighbours. Local neighbours have smaller Euclidean 
distance from the forecast sample and have a high 
similarity to the forecast samples. 
3.1.2 The Structure of Local Predictoin 

Collect the historical load data in time sequences. 
Single variable time series data contains all the 
information relative to variable. We can also understand 
that one-dimensional time series can be viewed as a 
lower dimensional compression with high dimensional 
information. In a high-variance system, using the 
embedding theorem to reconstruct a new space called 
phase space, the information can be extracted from a 
time series from on dimension to a higher dimension 

[10]. In the time domain, the sample ( )l t , 1, 2, ,t S=   

indicates local information and the S  is the length of 
time series. Accordingly, we can reconstruct the phase 
space through the delay coordinates and the function is 

      ( ) T[ ( ), ( ), , ( 1) ]t l t l t l t d = + + −l       (14) 
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where d  represents the embedded dimension,   is 

the time delay constant. Each tl  is unique in phase 

space and all tl  form a matrix together, which is 

written as 

           T

1 2[ , , , ]q=L l l l                (15) 

where L  is a set of nearest neighbours has high 
similarity to the forecast sample in the phase space and

( )1q S d = − − .  

3.2  Support Vector Machine Method 

Support vector machine is a new machine learning 
method based on statistical theory, which maps the 
input sample space to the high-dimensional linear 
feature space through a nonlinear kernel function, and it 
is able to handle nonlinear regression problems. It 
overcomes the shortcomings of artificial neural network, 
which shows long training time, poor generalization 
ability, falling into local minimum easily and so on. 
Support vector machine improves the generalization 
ability of the model. 

 A brief description of the SVM algorithm is provided 

next. Get a training set  
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the support vector machine classifier, on the basis of 
Vapnik’s [11] primitive description, it has to meet the 
following requirements 
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In another way 
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where   is the weight vector and the b  represents 

the bias. Nonlinear function ( ) : kSSB B  →  embeds 

the input or measurement space into a high-
dimensional. 

4.  SIMULATION STUDIES  

The formal model of the attack template is 
presented in the previous subsection. In this section, the 
impact of different types of attacks on the simulation 
model are observed and the accuracy of the novel 
method for detecting the attacks are verified. 

4.1  Impacts of FDIAS on System 

4.1.1 Frequency deviation 

The following observations can be drawn from Fig. 3. 
Under normal circumstances, the real frequency value is 
disturbed by the load with a step in the first second, and 
after a period of fluctuation, the stability is achieved. 
After adding the scaling attack with a factor of 0.5, as 
shown Fig. 3(a) and Fig. 3(b), the real frequency value 
and the the frequency measurement value are biased 
and oscillation duration becomes longer. Comparing Fig. 
3(c) and Fig. 3(a), as the pulse attack changes 
periodically, the real frequency value and the frequency 
measurement fluctuate within a periodic range and tend 
to stabilize. 

 

(a) Under normal circumstances 

 
(b) A scaling attack 

 
(c) A pulse attack 

Fig. 3 Frequency changes under different attacks. 

In modern power system, large frequency 
fluctuations can cause irreversible damage to 
equipment. But, the goal for this type of attackers is to 
initiate the frequency drop rapidly and trigger the load 
shedding scheme. In this case, attackers usually chose 
the scaling attack to change the frequency as soon as 
possible. 
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4.1.2 Control input 

Under normal circumstances, the control signal is 
disturbed by the load, and after a period of fluctuation, 
the stability is achieved. As shown in Fig. 4(a) and Fig. 
4(b), after adding the ramp attack with a slope of 0.5, as 
the attack signal increases, the real signal weakens 
rapidly and the measured signal tends to stabilize after a 
slight fluctuation. As to frequency signal, we can observe 
the apparent fluctuation and substantial decrease, then 
revert to original value after 18 seconds. 

 

(a) Under normal circumstances 

 

(b) A ramp attack 

 
(c) Frequency deviation 

Fig. 4 The influences of a ramping attack on control input. 

The choices of attack parameters and attack 
methods are critical to the attackers. The right choices 
not only produce the desired impact, but also do not 
touch off the alerts in the control center. 

4.1.3 Resonance attacks 

In this scenario, firstly, the attackers steal the output 
information of power grid. Then, the attackers modify or 
fake the input based on resonance source which are 

chosen ahead of the time and send the unreal signals    
input to the target power grid [5]. Thirdly, if the input is 
within reasonable range, the input will be accepted by 
the target power grid and the attackers can get their 
goals include adjusting the generator. Comparing Fig. 
3(a) and Fig. 5, after adding a pulse attack into the system 

in the fourth second, the load dP  and frequency 

deviation fluctuate with the period of the pulse attack, 
but the frequency attack measurement is not changed at 
all.  

 

 

Fig. 5 Resonance attack on AGC. 

4.2  Performance Evalution 

In order to verify the efficiency of the proposed 
method, the detect results will be revealed and discussed 
below. First of all, the dynamic system of a single-area 
LFC was established in MATLAB/Simulink. Then, 7 types 
of faults are set in 3 locations. Among these attacks, 
scaling attack, ramping attack and pulse attack are set in 
the modules which are frequency measurement attack 
and control attack, and simulate pulse attack at the port 
of load input. Specifically, the type and target of each 
fault are shown in Table I. Then, 1000 samples are saved 
at each different fault, which are 7000 samples in total. 
Thirdly, 800 training samples and 200 testing samples   
are selected at every scenarios respectively. After the 
training and detecting processes are finished, the 
accuracy of three method for testing the types of faults 
are presented in Table II. 
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TABLE I: Type and target of each attack 

Type Target Attack 

I Measurement channel Scaling 
II Measurement channel Ramp 
III Measurement channel Pulse 

IV Control channel Scaling 
V Control channel Ramp 
VI Control channel Pulse 

VII Load input Pulse 

 
TABLE II: Performance evaluation of the identification 

Method 

Method 
Accuracy 
Fault 

 
LP-

SVM 

 
SVM 

 
NB 

I 1.000 0.780 0.730 
II 1.000 1.000 1.000 
III 0.980 0.980 1.000 
IV 1.000 1.000 0.980 
V 1.000 1.000 1.000 
VI 1.000 0.420 0.890 
VII 1.000 0.000 1.000 

Average 0.997 0.814 0.819 

From Table I, comparing the detection method which 
is based on LP-SVM with SVM and NB demonstrates 
grate performance for all faults in all fault time series. To 
be more precise, the accuracy of LP-SVM has an average 
accuracy of 0.997 in seven different types of attacks. At 
the same time, the probability of fault I, II, IV, V, VI, VII 
are detected correctly is close to 1, which shows the LP-
SVM has strong robustness. These advantages attributes 
to the fact that the LP can be exhibited in high 
dimensional space, and the training set is extracted 
based on partial historical data and each point I 
distinguished in the local pattern. 

5.  CONLUSION 
In this paper, we have investigated the influences of 

FDIA on AGC system. Through various typical attack 
instances, the scaling, ramp and pulse attacks affect the 
stability of the power system, and attackers can destroy 
the electricity subtly under specific attacks. We have 
proposed one novel data-driven method for detecting 
attacks on a dynamic AGC system, based on LP and SVM. 
Results obtained from simulations demonstrate the 
higher accuracy and more stable performance for 
detecting attacks based on LP-SVM than SVM in various 
situations. Comparing with NB, the advantage of LP-SVM 
is also quite obvious. Moreover, under seven different 
attacks, the accuracy for detecting the attack can be 
maintained to 1, which indicates strong robustness. 
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