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ABSTRACT 
 Thermoacoustic heat engines are promising devices 

converting thermal power into acoustic power with the 
distinct merits of simplicity, and possibility for utilizing 
low-grade heat sources. As well known, design 
parameters are usually determined based on weakly 
non-linear thermoacoustics theory which of course 
produces significant deviations due to non-capturing of 
nonlinear phenomena. In order to improve inaccurate 
predictions of onset temperature obtained by DeltaEC 
linear thermoacoustic model, artificial neural network is 
first proposed to be hybridized with DeltaEC model to 
provide a new synergistic approach. This synergistic 
approach was applied to a twin thermoacoustic heat 
engine for improving the computational efficiency of 
DeltaEC model itself through considering some 
nonlinearities existing in the whole thermoacoustic 
system. The onset temperature was predicted as the 
responses to both resonator length and charging 
pressure and the obtained results had been proven to be 
desirable in their accuracy compared to experimental 
ones and better than literature DeltaEC results under 
same given conditions.  
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NONMENCLATURE 

Abbreviations  

ANN Artificial Neural Network  
DeltaEC    

 Design Environment for Low- 
Amplitude Thermoacoustic Energy 
Conversion 

 

Symbols  
t target (Actual output) 
o Network output (predicted output) 

1. INTRODUCTION 
Thermoacoustic heat engines (TAHEs) are 

considered as promising thermodynamic machinery 
converting thermal power into acoustic power based on 
the so called “thermoacoustic effect”. They provide 
many significant advantages including using fewer or no 
moving parts, environmentally friendly working 
substances as well as possibility to utilize low-grade heat 
sources [1]. The most potential applications of 
thermoacoustic heat engines are either to drive 
refrigerators or electrodynamic linear alternators [2, 3]. 
Recently, thermoacoustic heat engines have made rapid 
advancements in theoretical and practical research 
scope [4]. In this regard, it is imperative to focus on some 
design parameters influencing onset temperature as one 
of the most important performance indicators for 
thermoacoustic heat engines. Hence, suitable selection 
of design parameters to achieve appropriate onset 
temperature is required. 

Generally, in practical development of 
thermoacoustic heat engines, appropriate selection of 
design parameters is still a hard task to achieve desirable 
performances including either onset temperature 
(corresponding to heating temperature), acoustic wave 
parameters (i.e. oscillating frequency or acoustic 
pressure amplitude), acoustic power or the efficiency. 
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These performances depend primarily on various design 
parameters either operational such as charging pressure, 
geometrical such as resonator length and 
stack/regenerator dimensions besides thermo-physical 
properties of gas and solid media [5, 6]. Regarding onset 
temperature as our major of concern in this present 
study, it is considered one of the most important 
performance indices for thermoacoustic heat engines 
where lower onset temperature is always desirable as 
the limiting condition for TAHEs operation. Meanwhile, 
onset temperature should overcome thermal and 
viscous dissipations to excite oscillations. In this regard, 
Swift [1] had conducted a quantitative study on the 
building of thermoacoustic oscillations and proposed the 
“critical temperature gradient” which represents the 
limit between prime mover and refrigerator functions of 
thermoacoustic engines. Furthermore, Atchley et al. [7] 
had conducted many studies on the onset behavior 
describing the transition to onset in thermoacoustic heat 
engines. Later, Zhou and Matsubara [6] had 
experimentally studied the onset process in 
thermoacoustic heat engines and found that onset and 
damping temperatures are not the same. Also, Chen and 
Jin [8] had studied the onset and damping behavior in 
thermoacoustic prime movers based on the hysteresis 
phenomenon and found that the damping temperature 
lags the onset temperature. In addition, low and high-
frequency modes in the onset process were observed by 
Yu et al. [9] in one thermoacoustic Stirling prime mover 
to investigate the stability of oscillation modes namely, 
stability mode and transition mode. In their work [9], it 
was found that once the low-frequency mode oscillation 
is excited at the existence of high-frequency mode 
oscillation, the latter mode will be gradually slaved and 
suppressed by the former one. Also noticed that mean 
pressure is considered an important control parameter 
influencing the stability mode in the tested 
thermoacoustic system. On the other hand, Qiu et al. 
[10] had experimentally applied pressure disturbance in 
thermoacoustic heat engines to significantly minimize 
the onset temperature.  

Furthermore, recently, Wang et al. [11] had 
visualized the onset mechanism characteristics in 
traveling wave thermoacoustic heat engines using 
infrared imaging. It was noticed that Gedeon streaming 
has a significant effect on the axial temperature 
distribution of the onset and damping processes. 
Thereafter, He et al. [12] had experimentally and 
analytically interpreted the onset and damping 
behaviors in a standing-wave thermoacoustic heat 

engine considering the convective heat transfer between 
gas and stack. It was found that both efficiency and 
acoustic power output increase with increasing the gas-
stack heat transfer coefficient, the gas displacement 
amplitude and the heating temperature difference 
across the stack. Also, it was found that decreasing the 
tilted angle leads to increasing the gas-stack heat 
transfer coefficient of the natural convection which 
consequently decreases the onset and damping 
temperature differences. Besides, theoretically (or 
analytically), de Waele et al. [13] had obtained analytical 
expressions for the onset temperature, the damping 
coefficient and the oscillation frequency, that allows 
stable oscillations, based on a fourth-order differential 
equation which determines damping, growth, or stability 
of oscillations and describe the dynamics of the 
individual thermoacoustic components.  
   On the other hand, Guedra et al. [14] had focused on 
predicting the onset conditions of thermoacoustic 
instability for various thermoacoustic engines either with 
standing-wave or traveling-wave modes using a semi-
empirical way and treating thermoacoustic core as a 
black box. Specifically, in their work [14], an 
experimental apparatus was successfully presented to 
deduce transfer matrix coefficients of thermoacoustic 
core under various heating conditions by means of a 
four-microphone through applying a “two-load” method 
for acoustic measurements, then developing an 
analytical model to predict onset conditions (i.e., onset 
heating power supplied and onset frequency). Moreover, 
Sun et al. [15] had developed a simplified physical model 
for calculating the onset temperature ratio and the 
frequency of a standing wave thermoacoustic engine in 
the time domain based on thermodynamic analysis. The 
effects of stack spacing, charge pressure, and resonator 
length on the onset temperature ratio and the frequency 
were calculated. Relatively good agreement between the 
computational and experimental results has been 
achieved, which validated the model for calculating the 
onset characteristics of thermoacoustic heat engines. 
Additionally, based on numerical investigations, Qiu et 
al. [16] had numerically simulated the onset process in a 
standing-wave thermoacoustic heat engine based on 
thermodynamic analysis. Transient pressure drop and 
heat transfer data were first calculated based on weakly 
non-linear thermoacoustics theory. Thereafter, the 
effects of stack spacing, charge pressure, and resonator 
length on onset temperature were numerically 
investigated and compared with experimental results to 
demonstrate a good agreement. More recently, 
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Boroujerdi et al. [17] had analytically investigated the 
influences of stack and thermoacoustic heat engine 
dimensions as well as charging pressure on both onset 
temperature and oscillating frequency under different 
working gases. Furthermore, Meir et al. [18] had 
experimentally and analytically demonstrated that mass 
transfer can significantly lower the temperature gradient 
required to achieve acoustic onset in phase-change 
thermoacoustic heat engines.     

Undoubtedly, all aforementioned attempts had 
presented quite-well predictions to some extent for the 
onset temperature compared with experiments. 
However, accurate numerical predictions of onset 
temperature is still lacking. Therefore, to explore an 
accurate predictive approach is quite useful and still 
needed. From here, artificial neural network (ANN) as an 
intelligent approach was first proposed to improve the 
computational efficiency of one thermoacoustic 
numerical model called DeltaEC model in order to reduce 
the deviations arising from the latter model. It is 
noteworthy that DeltaEC model is only convenient for 
the applicability within linear (or weakly non-linear) 
thermoacoustic regime where such a limitation makes it 
ineffective in capturing intrinsic nonlinear phenomena 
[1]. Therefore, to make DeltaEC platform more powerful 
to deal with nonlinear problems such as temperature 
non-uniformity as in our case study, ANN is introduced 
as a synergistic (or calibrating) approach to be coupled 
with DeltaEC model and form a hybrid model. Generally, 
hybrid systems combine more than one machine 
learning technology where each system represents a part 
of these integrated systems for performing a specific task 
by one technique that will be followed by another task 
from the other technique to completely solve the 
considered problem.  

Regarding ANN technique, it is a data-driven model 
where its characteristics are pertinent mainly to 
nonlinearity, high parallelism, fault and noise tolerance 
as well as learning and generalization ability. Also, ANN 
does not need any prior assumptions concerning data 
distribution or lengthy iterative calculations, which 
makes it more attractive alternative to both statistical 
and numerical methods [19]. A. Rahman et al. [20] had 
initiated the application of ANN to different 
thermoacoustic heat engine and refrigeration systems in 
a series of research work for data prediction. On the 
other hand, DeltaEC is considered a powerful simulation 
platform used to design thermoacoustic devices [1]. 
Many research work have used DeltaEC for design and 
modeling of thermoacoustic systems [21]. To authors’ 

knowledge, very few literature work had focused on 
improving the computational efficiency of numerical 
models by using ANN technique, mainly for improving 
environmental, oceanic and hydrological numerical 
models [22-26]. Recently, related to engineering 
applications, Wani et al. [27] had used the same concept 
of our hybridization technique. In their work [27], the 
performance indices of a two stroke spark ignition 
engine including  power and break specific fuel 
consumption, were predicted as responses to three 
inputs namely speed, throttle position (or load) and air-
to-fuel ratio. Their hybrid model had presented more 
accurate results than those obtained from the 
conventional numerical model itself. More recently, Lü 
et al. [28] had used ANN as a calibrating model for one 
building numerical model to simulate the indoor 
temperature or/and humidity for unheated and 
uncooled buildings which can be extended to other 
building simulations. It was found that the calibrated 
numerical model by ANN model can provide more 
accurate results compared to the numerical model alone. 
Moreover, the developed calibration model needs only 
few measurements as necessary inputs which 
significantly simplifies the calibration (synergism) 
process for modeling the building performances. In this 
present study, a hybrid model combining artificial neural 
network (ANN) and DeltaEC models, would be developed 
for one typical twin standing wave thermoacoustic heat 
engine as considered the computational example from 
published literature [29]. Herein, the onset temperature 
would be predicted as a response to both resonator 
length and charging pressure as the considered 
geometrical and operational parameters, respectively. 
Thereafter, the significance of proposed hybrid model 
would be verified where our objective here is to 
introduce a novel effective and practical approach for 
more accurate thermoacustic predictions by ANN-
DeltaEC hybrid model.      
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Fig 1 Schematic diagram for twin standing-wave 
thermoacoustic heat engine 
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2. NEURAL NETWORK-DELTAEC HYBRID MODEL FOR 
IMPROVED PREDICTION OF ONSET TEMPERATURE 

2.1 Physical Model 

For convenience of comparison, the experimental 
set up of a twin thermoacoustic prime mover (twin 
TAPM) in [29] was used here as the physical model as 
shown in Fig.1.  This twin TAPM can produce acoustic 
waves of desired frequency with enhanced pressure 
amplitude. Compared to single TAPM, this twin TAPM 
generates the acoustic waves with high pressure 
amplitude and acoustic power which can be utilized to 
effectively drive refrigerators and pulse tube cryocoolers 
[29]. As shown in Fig.1, stack, hot and cold heat 
exchangers were assembled perpendicular to each other 
to prevent blockage of heat and fluid flow. The diameter 
of resonator, stack and heat exchangers is 0.038 m. 
Nitrogen was used here as the working fluid with 
charging pressure varying from 0.1 to 1 MPa with a 
gradual step of 0.1 MPa. Also, resonator length was 
varied to be either 0.5m, 0.6m, 0.8m, 1.1m or 1.4 m. The 
stack has a length of 0.05 m, a spacing of 0.5 mm and a 
thickness of 0.5 mm while hot and cold heat exchangers 
have lengths of 0.02 m and 0.01 m, respectively. 

2.2 Determination of samples, structure and training 
algorithm 

For the sake of convenience of comparison, 50 
experimental data from [29] would be used as the data 
samples. Resonator length and charging pressure were 
considered as the variables of interest influencing onset 
temperature. Initially, experimental data samples were 
divided into two groups, one for building our ANN model 
while the other for verifying the ANN prediction ability. 
More specifically, the first group data samples were 
divided into two distributed modules each with 20 input 
data samples. Each 20 data samples were split into three 
data sets: 70% for training to learn, 15% for validation to 
minimize over-fitting and 15% for testing to assess the 
generalization performance [20]. These three data sets 
were normalized according to Eq. (1), then randomized 
and finally introduced sequentially to the ANN model. On 
the other hand, the remaining 10 data samples would be 
introduced as new unseen input data to the established 
neural network model. 

min

max min

0.8 0.1i
i

k k
x

k k

 
  

 
,           (1) 

where xi represents the normalized value of ki.                         

ANN models are often characterized by structure, 
neuron characteristics, learning parameters, training 
algorithm and training function, which represent the 
constraints for optimizing the network performance. 
Structurally, a typical feed-forward neural network with 
one hidden layer is commonly adopted in majority of 
applications. Besides, the number of input and output 
neurons is determined according to the considered 
modelling problem while number of hidden neurons 
needs to be accurately optimized. In this regard, it was 
recommended that the number of hidden neurons can 
be a function of the number of input neurons (n) as 
follows: “n/2”, “n”, “2n” and“2n + 1” [20]. Moreover, 
back-propagation algorithm as shown in Fig. 2 with 
Levenberg-Marquardt training function was adopted 
here for low- and moderate-sized networks.  
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Fig 2 A schematic diagram for multi-layer feed-forward ANN 
model with an error back-propagation training algorithm 

Regarding ANN performance evaluation, the least 
mean square error (MSE) during the validation phase has 
the priority to be selected as the generalization criterion 
to show how close or far the network outputs are with 
respect to the actual ones according to Eq. (2). In 
addition, the other criterion is to analyze the regression 
between the network responses and corresponding 
targets (actual outputs) from the correlation coefficient 
(R2) as illustrated in Eq. (3) and hence confirm the 
optimum number of hidden neurons. In general, R2 value 
varies between 0 and +1, where R2 value close to +1 
indicate a robust positive linear correlation between the 

network outputs and targets, while the values near to 

0 indicate a very weak correlation [20].  
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2.3 Neural network – DeltaEC hybrid model 

Herein, ANN-DeltaEC hybrid model comprises of 
two major parts, conventional DeltaEC model and 
distributed synergistic multi-structure ANN model as 
shown in Fig. 3. Regarding synergistic ANN model, it 
consists of specific number of modules, each of which 
comprises of multi-structure units of neural networks 
with different neuron characteristics (i.e. different 
transfer functions) as shown in Fig. 4.  
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Fig 3 ANN-DeltaEC hybrid model 
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Fig 4 Distributed synergistic multi-structure ANN 

The characteristics of the data set are trained in parts on 
various unit structures where the unit structure in a 
single module is responsible for identifying only a part of 
the data set characteristics. Moreover, this hybrid model 
regards the DeltaEC model output as an additional input 
for the sake of synergism as shown in Fig. 3. Therefore, 
the word “synergistic” would be given to DeltaEC model 
outputs which need to be improved. Furthermore, the 

output of each module was obtained by averaging the 
outputs from its three unit-structure neural networks. 
Then, the final predicted output will be determined as 
the highest averaged output obtained among these 
individual modules [27]. This work was implemented 
using Neural Network Toolbox of MATLAB platform. 

3. Results and Discussions 
Based on sensitivity analysis, it was found that the 

hybrid network structure with the configuration of 3-7-1 
was adopted here with least MSE (i.e. best validation 
performance) as well as highest correlation coefficient, 
R2 satisfying the two aforementioned performance 
evaluation criteria as shown in bold in Table 1. On the 
other hand, regression plots for the network outputs 
were presented in Fig.5 with respect to the targets 
(actual outputs) during training, validation and testing 
phases (i.e. overall regression plots). Here, the final 
overall regression value represents the average from all 
groups of data samples at different hidden transfer 
functions. These plots indicate a very good fit between 
the network outputs and actual ones due to higher 
values of regression.  

Table 1 Sensitivity analysis for proposed synergistic neural 
networks concerning onset temperature  

Network structure MSE R2 

3-2-1 0.000798 98.54 

3-3-1 0.003585 95.45 

3-6-1 0.000645 99.46 

3-7-1 0.000547 99.51 

Moreover, the 10 new unseen data samples were 
used for verification as shown in Fig. 6 from which the 
average prediction error was minimized at 7 hidden 
neurons. Furthermore, compared to experimental 
results under same conditions, predicted onset 
temperature by hybrid model had shown a very good 
agreement with average prediction error percentage of 
4.54%. These predicted results demonstrated the ability 
of our hybrid model to predict the onset temperature 
inside the covered range with a high degree of accuracy 
as shown in Fig. 7. On contrary, DeltaEC results had 
shown some deviation from experimental ones with 
average prediction error percentage of 8.3%. 

The deviations of DeltaEC model results can be 
interpreted from (i) Not taking thermal losses associated 
with the experimental setup into consideration; (ii) 
Ignoring the effect of thermoacoustic core inside 
thermoacoustic system; (iii) Non-uniformity in average 
gas temperature arising from non-uniformity of stack  
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Fig 5 Overall regression plots for both first and second groups 
of data samples at different hidden transfer functions 
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number of hidden neurons 
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Fig 7 Experimental and predicted onset temperature by both 
DeltaEC and hybrid models vs. verification dataset numbers 

plate spacing, which consequently affects the gas 
temperature distribution, as well as (iv) entropy 
generation by irreversibilities resulting from fluid friction 
and heat transfer to surroundings. From here, one can 
see the degrees to which linear (or weakly non-linear) 
thermoacoustics theory cannot describe these 
influences of nonlinear dissipations. On contrary, the 
good agreement of ANN-DeltaEC hybrid model results 
with experimental ones had demonstrated the capability 
of handling complex nonlinear phenomena, and 
describing more real world physical matters by learning 
from experimental data. 

4. Conclusions 

The present work provides a novel practical and 
effective modeling approach for thermoacoustics based 
on a distributed and synergistic ANN-DeltaEC hybrid 
model to accurately predict the onset temperature of a 
twin thermoacoustic heat engine. The results from 
conventional DeltaEC model itself had been significantly 
improved to be close to experimental results, which 
implies the strong ability of ANN in capturing the 
nonlinearities existing in the considered thermoacoustic 
system through effectively combining ANN model and 
DeltaEC model to perform complementary tasks. The 
present work presented a more significant and flexible 
approach for obtaining more accurate thermoacustic 
predictions by ANN-DeltaEC hybrid model. On the other 
hand, for future research work, more applied research 
will be devoted to more complex mappings, system 
identification as well as optimization for nonlinear 
thermoacoustic problems through using ANN technique 
either alone or hybridized with other conventional 
numerical models to improve their computational 
efficiencies. 
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