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ABSTRACT 
 This paper evaluates the airline productivity change 

by applying a modified global Malmquist productivity 
index (GMPI) model that incorporates both CO2 
emissions and flight delays into the estimation model. 
Statistical inference is also performed on GMPI results 
using the bootstrapping method. Empirical research was 
conducted on 15 international airlines during 2011-2017. 
The empirical results showed the productivity of all 
airlines experienced a slight increase over 2011-2017. 
The results of GMPI and five driving factors of the 15 
airlines were test to be reliable in most cases. Although 
efforts were made to restrain both CO2 emissions and 
flight delays, airline CO2 emission reduction was still 
inadequate to influence the productivity of airlines. 
Punctuality improvement did not facilitate overall 
productivity growth as expected. The additional cost paid 
by airlines to optimize their punctuality performance 
may not always lead to actual gains in productivity in the 
short term. Efficiency change and technological change 
were the major driving factors for the growth of airline 
productivity. Fifteen airlines had differed efficiency and 
technology features when considering the scale 
efficiency. Airlines need to choose targeted operational 
approaches to improve their productivity. 
 
Keywords: airline performance, global Malmquist 
productivity index, airline CO2 emissions, flight delays. 
 

1. INTRODUCTION 
The international civil aviation industry has 

experienced rapid growth over the past few decades, 
boosted by a population boom and economic prosperity 

[1]. Inevitably, airline companies are faced with more 
and more fierce competition [2], and they have devoted 
to improving operational performance and pursuing 
greater competitiveness [3-7]. 

With the increasing environment and service quality 
awareness of consumers, new challenges emerged for 
airlines. One of these is that the environmental issue 
with the highest profile is the CO2 emissions of the airline 
[8]. Some scholars have focused on measuring the airline 
performance with airline CO2 emissions as the 
undesirable output in recent years [9-12]. 

Service quality is a further important issue for 
airlines. Improving service quality helps the airline retain 
customers and maintain its market position. Whether a 
flight can arrive at the destination on time is always of 
great concern to consumers in airline quality rating [13]. 
In fact, flight delay has become a severe problem to 
airlines as it may lead to financial and technical 
inefficiency [14]. Flight delay has been the subject of 
several existing literatures for its potential effect on the 
airline performance [15-17][3].  

Based on the existing literature, this paper provides 
an evaluation of airline productivity by constructing a 
global Malmquist productivity model with undesirable 
output and attributes. The main contributions of this 
study are that: This paper proposes an integrated airline 
performance evaluation method that considers the 
effects of CO2 emissions and flight delays on airline 
productivity. This integrated airline performance 
evaluation approach on airline productivity, which 
incorporates statistical inference by performing a 
bootstrapping procedure, provides a reliable framework 
for the assessment of the underlying sources of airline 
productivity change. An empirical study was conducted 
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to analyze efficiency, technology and punctuality 
changes’ influence on airline productivity, which helps to 
monitor changes in airline productivity and provide 
management advice. 

2. METHODOLOGY 
To incorporate both CO2 emission and flight delays 

in airline productive performance evaluation, we use a 
modified Malmquist productivity index model of Färe et 
al.[18] . Given that airline operators tend to optimize 
their input to achieve equivalent output value, we used 
input-oriented Malmquist productivity index in this 
paper. Also, a global Malmquist index (GMPI)is used to 
overcome the weakness of geometric mean Malmquist 
index (i.e. non-circularity and infeasibility) [19]. 

We construct the technology set, in which each 
company uses labor (L) and fixed asset investment (K) as 
inputs to revenue passenger kilometers (Y) as desirable 
output, CO2 emissions (C) as undesirable outputs. 
Besides, we take the input attribute, the flight delay rates 
(D), as a proxy for punctuality on the input side; the 
passenger load factor (LF) is regarded as a proxy for 
market performance on the output side. As the 
passenger load factor is a typical market performance 
index in the airlines, we incorporate it into the model to 
testify whether punctuality reduction has influence on 
airlines’ operations. 

The production technology set can be described as: 
       𝑆 = {(L, K, 𝐹𝐷, Y, C, 𝐿𝐹): (L, K, 𝐹𝐷)can produce (Y, C, 𝐿𝐹)} (1) 

The input-oriented Shephard distance function, 
which yields the maximum possible reduction of inputs 
when keeping the other factors fixed, is defined in Eq (2). 
𝜃  is the reciprocal of the distance function and 
represents the airline’s technical efficiency. 

𝐷𝐼(L, K, 𝐷, Y, C, 𝐿𝐹) = 𝑠𝑢𝑝 {𝜃| (
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The distance function can be calculated by 
estimating certain DEA Models. 

Further, input-oriented GMPI is defined as Eq (3). 
The index could be further decomposed into factors 
related to attribute changes (𝐴𝐶𝐻𝑖

𝑠,𝑡) and physical variable 
changes (𝑃𝐶𝐻𝑖

𝑠,𝑡). The subscript c in the distance function 
represents a constant return to scale, while v represents 
a variable return to scale; i represents the i-th decision 
making unit (DMU). Superscripts s and t represent the 
base period and the study period, respectively. 
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Following Färe, Grosskopf, & Roos (1995), we 

assume that the distance function is multiplicatively 
separable in attributes and input/outputs, as 
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such, the global Malmquist productivity can be 
decomposed into 5 factors. 
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They are the factors of punctuality change (ACH), 
pure efficiency change (PECH), scale efficiency change 
(SECH), pure technological change (PTCH) and 
technological scale change (STCH). For these factors, 
Values greater than 1 indicate an improvement in 
productivity performance, while values less than one 
imply deterioration. The bootstrap is also applied here to 
perform statistical inference on GMPI results [20]. 

3. DATA 
15 representative international airlines are selected 

as samples in the empirical research. They are Delta 
(DAL), Southwest(SWA), Alaska(ASA), Air France-
KLM(AFR-KLM), Lufthansa(CLH), Emirates(UAE), China 
Southern(CSN), Air China(CCA), China Eastern(CES), 
Hainan Airline(CHH), Cathay Pacific Airways(CPA), 
Singapore(SIA), All Nippon Airlines(ANA), Korean 
Air(KAL), Qantas Airways(QFA). Time period ranges from 
2011 to 2017. These airlines come from Asia, America, 
Europe and Oceania and are all representative airlines in 
each country. All the data are self-collected from open 
reports of these airlines.  

4. RESULTS AND DISCUSSION 
Empirical research was conducted on the 15 selected 

airlines from 2011 to 2017. First, the global technical 
efficiencies of 15 airlines were calculated with DEA 
techniques, as shown in Fig 1.  

According to Fig. 1, the incorporation of CO2 
emissions made little difference for the efficiency 
estimation of these airlines. It indicates that though 
airlines focus on CO2 emission reduction, their efforts 
were still inadequate to influence productivity during 
2011-2017. In comparison, the inclusion of punctuality 
attributes imposed a greater influence on the estimation 
results. The efficiency scores obtained when considering 
the punctuality attributes were higher than those 
obtained with a purely technical frontier for all airlines. 
It is common case for DEA to get higher scores when 
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incorporating more variables, as the production frontier 
would shrink with more constraints imposed in the linear 
programming. Still, airlines with better punctuality 
performance, such as ANA, CLH, ASA, and AFR-KLM 
(around 15%), tend to take relatively greater advantage 
of this modification in productivity performance 
evaluation. The results imply that the technical efficiency 
of airlines with poor punctuality performance was 
overestimated in a model without punctuality attributes. 
Punctuality improvement enables airlines to increase 
customer satisfaction, rationalize their utilization of 
resources, and attract more passengers. 

 
Fig 1. Average global technical efficiency of 15 airlines 

In general, airlines in North America stayed at high 
efficiency level among the 15 airlines. North American 
airlines took the lead in aviation industry, and they can 
easily approach the cutting-edge technology and 
management experience. European airlines were less 
efficient than American airlines. Although Europe was 
also the most important aviation market besides North 
America, the development of European airlines was 
slower than North America. What’s more, efficiency 
scores ranged a lot among Asian airlines, airlines with 
smaller scales tend to have better technical efficiencies. 
As most of the Asian airlines had been in the process of 
technological catching up, it would be easier for airlines 
with smaller scales to modify their operations and 
achieve more gains in efficiency. The “Big Three airlines” 
of China (CES, CSN and CCA), which was large in scale, 
would take more time in technical efficiency 
improvement. 

The calculation of GMPI and its driving factors can be 
got using Eq (3) and (4). Results are shown in Fig 2. In 
general, there was a slight increase in productivity for the 
15 airlines. When not considering punctuality change in 
the model, airlines’ productivity had been increasing 
during all years. Contrary to general belief, punctuality 
change did not facilitate airline productivity growth 
during the sample period. 

Airline productivity with punctuality change factor 
experienced a slight drop (around 3%) during 2012-2016, 
which was mainly a side effect of punctuality change.  
The airlines’ punctuality was improved at a certain 
degree during 2014-2016, but there was no apparent 
increase in airlines’ passenger load factor during these 
years. The results indicate that market performance of 
these airlines did not greatly improve with flight delay 
reduction. Airlines paid an additional cost to optimize 
their punctuality performance; however, the on-time 
performance improvement apperceived by customers 
may not always convert into actual gains in productivity 
of airlines in the short term. 

Physical variable changes, including efficiency 
change and technological change factors, were the major 
driving factors for airline productivity growth. The 
airlines’ efficiency had been increasing during the past 
years, mainly coming from scale efficiency change. Pure 
efficiency scores of these airlines experienced a slight 
drop during these years. It shows that the airlines were 
at the stage of increasing returns to scale (IRS), and they 
had been expanding their operations to meet the 
increasing market demand. Most of the airlines 
benefitted from the expansion of aviation market and 
had their operational efficiency improved. 

Also, the airlines’ technology had experienced 
certain improvement during the study period. With the 
international aviation turnover increasing rapidly with an 
annual rate of around 4% (ICAO), airlines have put more 
efforts into innovating technology during the past few 
decades. However, there was no progress but a slight 
drop in technology during 2012-2015. Global economy 
remained sluggish after recovering from the financial 
crisis. Particularly, there was a considerable drop in the 
growth rate of emerging economies in 2012. Stagnate 
passenger growth, together with the high fuel prices, put 
burden on airlines’ operations and slowed their 
technology investment. For example, most of the airlines 
put off updating their fleet in 2012.  

PTCH had positive effect on airline productivity. As 
for technological scale change, airlines were in the stage 
of decreasing returns to scale during 2012-2015. The 
airlines’ existing technology progress mainly came from 
the technology import rather than self-dependent 
innovation, which is unsustainable. After 2015, the 
situation was improved and airlines’ PTCH and TSCH both 
turned to be positive factors to productivity change. 

Based on the GMPI results for 15 airlines from 2011 
to 2017, bootstrapping procedure was also applied to 
perform statistical inference on the GMPI. Table 1 

0.20

0.40

0.60

0.80

1.00
with FD and CO2

without CO2

without FD



 4 Copyright ©  2019 ICAE 

reports the estimates of GMPI, together with its 
statistical testing results. Also, Table 2 reports the 
average annual results of GMPI and five driving factors of 
the 15 investigated airlines. Most of the airlines shared 
similar trends on GMPI and five driving factors, as 
mentioned above. The bootstrapping results also show 
the reliability of the original GMPI results in most cases. 

Overall, except for the stagnant development of the 
aviation industry in certain years, airline productivity had 
been increasing with the rapid expansion of the industry 
during 2011-2017.  

 

 
Fig 2. Cumulative productivity growth and its driving factors, 2011-
2017 

 
Fig 3. Average flight delay and passenger load factor change during 
2011-2017. 

The productivity growth was mainly owing to the 
efficiency improvement and technology progress. A 
catching-up existed among several less developed 

airlines. These airlines tend to experience a stronger 
increase in productivity than the most efficient airlines. 
Scale efficiency played an important role in both 
efficiency and technology change. IRS of efficiency 
mainly occurred in European airlines and in most of the 
Asian airlines. These airlines benefitted from the 
expansion of the aviation market and improved their 
operational efficiencies. Although the aviation industry is 
still under the progress of expansion in the emerging 
economies, airlines should also pay more attention to 
optimizing their management strategies. For airlines of 
North America, efficiency growth mainly originates from 
pure efficiency improvement, not scale efficiency. They 
have advantages in management experience; therefore, 
they should emphasize structural adjustment of the 
company. IRS of technology only occurred in North 
American airlines and in part of Asian airlines. These 
airlines took the lead in technology innovation and 
should maintain their technology level and import 
advanced technology if necessary. However, the 
technology progress of airlines in Europe and most of 
Asia originated from pure technology efficiency 
improvement. These airlines’ existing technology 
progress mainly originates from technology import 
rather than from self-dependent innovation. They should 
emphasize the improvement of their own technology 
innovation ability. 

Punctuality change did not facilitate productivity 
growth as expected, although there were flight delay 
reductions in half of the airlines. Market performance of 
the airlines did not greatly improve with flight delay 
reduction. Thus, the additional cost paid by airlines to 
optimize their punctuality performance may not always 
yield actual gains in productivity in the short term.  
Table 1. Changes in GMPI during 2011-2017 

GMPI 
2011-

2012 

2012-

2013 

2013-

2014 

2014-

2015 

2015-

2016 

2016-

2017 

CES 0.9902** 0.9459** 0.9503* 1.1415** 1.0562** 1.0338** 

CSN 0.9167** 0.9257** 1.0343** 1.0078** 1.0724** 1.0705** 

CCA 0.9929 1.0167** 1.0061* 0.9914** 1.0848** 1.0116** 

CHH 0.9396** 0.9867* 0.8331** 0.8964** 1.4442 1.0000** 

CPA 0.9732 0.9959** 1.0015 1.0003** 1.0234 1.0063 

DAL 1.0548** 0.9658** 1.0104 1.0154** 1.0093** 1.0000** 

ASA 0.9950 0.9811** 0.9424** 1.0041** 1.0825** 0.8634** 

SWA 1.0739** 0.9742** 0.9637** 1.0824** 1.0042 0.9755* 

KAL 1.0000 0.9169** 0.9634** 1.0376** 1.0910 0.9338 

QFA 1.0099 0.9840** 1.0749** 1.1234** 1.0073** 1.0179** 

AFR-KLM 1.0817** 1.0583** 1.1373** 0.9416** 0.9695* 0.9297** 

CLH 0.9704** 1.0056** 1.0888** 0.9261** 0.9208** 0.9808 

SIA 1.0000** 1.0000** 0.9981 1.0019 1.0000* 0.9755** 

ANA 0.9218** 0.8914** 0.9530 1.1374** 0.8796** 0.9865** 

UAE 1.0000** 1.0000** 0.9985 0.9829** 1.0189 1.0000* 

Gmean 0.9936 0.9757 0.9946 1.0168 1.0381 0.9845 

*the index is significantly different from unity at the 0.1 level 
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**the index is significantly different from unity at the 0.05 level 
Table 2. Annual average change on GMPI and its driving factors  

Airline GMPI Rank ACH PECH SECH PTCH STCH 

CES 1.017 2 0.967 1.027 1.005 1.026 0.994 

CSN 1.003 7 0.986 0.996 1.005 1.033 0.982 

CCA 1.017 4 1.007 0.998 0.992 1.034 0.987 

CHH 1.000 9 0.911 1.000 1.088 1.000 1.009 

CPA 1.000 8 1.000 1.000 1.000 1.000 1.000 

DAL 1.009 6 1.008 1.000 0.988 1.007 1.007 

ASA 0.976 14 0.940 1.000 0.974 0.961 1.110 

SWA 1.011 5 0.979 0.975 0.992 1.052 1.015 

KAL 0.989 12 1.018 1.000 0.994 0.972 1.005 

QFA 1.035 1 1.003 1.004 1.012 1.031 0.986 

AFR-KLM 1.017 3 0.957 0.964 1.082 1.057 0.964 

CLH 0.981 13 0.932 0.929 1.111 1.081 0.942 

SIA 0.996 11 1.002 1.000 1.000 0.994 1.000 

ANA 0.958 15 0.932 1.072 0.971 0.922 1.071 

UAE 1.000 10 0.986 1.000 1.000 1.000 1.014 

 

5. CONCLUSION 
This paper evaluates airline productivity and its 

driving factors by applying a modified global Malmquist 
index model. Both CO2 emissions and flight delays have 
been incorporated into the distance function estimation 
model to identify the effects of efficiency, technology, 
and punctuality change on airline productivity. The 
bootstrapping procedure is also applied to perform 
statistical inference on the GMPI results. Using the 
integrated airline performance evaluation approach 
proposed in this paper, an empirical study was 
conducted on 15 international airlines for the time 
between 2011 and 2017. The following results can be 
summarized: 

In general, the results of GMPI and five driving 
factors of the 15 airlines passed the statistical test in 
most cases, implying the reliability of GMPI results based 
on DEA calculations. Except for the stagnant 
development of the aviation industry in certain years, 
the productivity of most airlines increased with the rapid 
expansion of the industry during 2011-2017. A catching-
up existed among several less-developed airlines, which 
experienced greater increase in productivity than the 
most efficient airlines. Multiple types of methods were 
used in operations to restrain CO2 emissions and flight 
delays. However, airline CO2 emission reduction was still 
inadequate to influence airline productivity during 2011-
2017. All airlines should put more efforts into reducing 
CO2 emissions. 

Although punctuality performance improved in half 
of the airlines, punctuality change did not facilitate 
overall productivity growth as expected. Market 
performance of the airlines did not greatly improve with 
flight delay reduction. Thus, the additional cost airlines 

have for the optimization of their punctuality 
performance may not always yield actual gains in 
productivity in the short term. However, in the long 
term, excellent flight punctuality would help increase 
customer satisfaction, attract more passengers, and 
reduce waste of airline resources, thus improving 
organization performance. 

However, in the long term, excellent flight 
punctuality helps to increase customer satisfaction, 
attract more passengers, and reduce waste of airline 
resources, thus improving organization performance. 
Flight delay reduction should still be on the airlines’ 
agendas. Given that external regulations (e.g. air traffic 
management) are also important factors for flight delays, 
the government organization should take more 
supportive measures to help with flight punctuality 
improvement. 

Efficiency change and technological change were the 
major driving factors of airline productivity growth. Scale 
efficiency played an important role for both efficiency 
and technology change. IRS of efficiency mainly occurred 
in European and most of Asian airlines. Efficiency growth 
of North American airlines mainly originated from pure 
efficiency improvement, not from scale efficiency. IRS of 
technology only occurred in North American airlines and 
in part of Asian airlines. However, airlines in Europe and 
most of the Asian airlines had their technology progress 
originating from pure technology efficiency 
improvements. Airlines need to choose targeted 
operational approaches to improve their productivity. 

More work should be done on this research topic. 
For example, more explanation factors need to be 
investigated on the airlines’ efficiency and punctuality. 
Moreover, this study did not consider cost the evaluation 
due to data unavailability; however, this is an important 
factor that affects the punctuality of an airline. Further 
research should be on it. 
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