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ABSTRACT 
    The present work aims to develop a learning-based 
approach for a demand-driven control system which can 
automatically adjust the HVAC set points and supply 
conditions in terms of the actual requirements of the 
conditioned space. Internal heat gains from typical office 
equipment, such as computers, printers and kettle will 
be the focus of this paper. Due to its irregular use during 
scheduled heating or cooling service periods, an 
opportunity is offered to reduce unnecessary energy 
demands of HVAC systems related to the actual use of 
the equipment and its heat gains, i.e. over- and under-
utilization of equipment indicate whether indoor spaces 
are required to be conditioned or not. The work will be 
using deep learning enable cameras which can locally run 
trained algorithms to analyze and take action based on 
how equipment is utilised in a space real time. This 
proposed strategy automatically responds to the 
equipment usage for optimizing energy consumption 
and indoor conditions. The work will compare the 
performance of the developed approach with a 
conventional approach such as the use of static heating 
or cooling profiles. To highlight its capabilities, building 
energy simulation was used and initial results showed 
that while maintaining thermal comfort levels, up to 11% 
reduction of the energy consumption can be achieved by 
the proposed strategy in the comparison to 
conventionally-scheduled HVAC systems, while only 
focusing on three types of equipment. 
 
Keywords: Artificial intelligence; Built environment; 
Deep learning; Equipment detection; Energy savings; 
HVAC 
 

NONMENCLATURE 

𝑏𝑘 Bias for the feature map 
f Activation function 

𝑊𝑘 Value of the kernel connected to the kth 
feature map 

AI Artificial Intelligence 
BES Building Energy Simulation 
CNN Convolutional Neural Network 
GPU Graphics Processing Unit 
HMM Hidden Markov Model 
HVAC Heating, Ventilation and Air-conditioning 
IESVE Integrated Environment Solutions Virtual 

Environment 
KNN K-Nearest Neighbour 
MEL  Miscellaneous electric load 
NN Neural Network 
PC Personal Computer 
PIR Passive Infrared Sensor 
RFID Radio Frequency Identification 
SVM Support Vector Machines 
UK United Kingdom 

1. INTRODUCTION 
In recent years, there has been an emphasis on 

"smart" technology, and everything has been imbued 
with intelligence. The popularity and applications of 
using smart technology to create digital and energy 
efficient buildings have increased and show no signs of 
slowing down [1]. Artificial Intelligence (AI) technology is 
used in this study to achieve the goal of smarter built 
environment and reduce its consumption, up to 36% of 
global total energy demand. Specifically, the deep 
learning method which is a form of machine learning 
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based on neural networks. In this study, it is selected to 
address the limitations of providing real-time equipment 
usage profiles for Heating, Ventilation and Air-
conditioning (HVAC) controls automatically without 
using costly measurement meters. It performs 
classification tasks directly from videos, images, text, or 
sound. It means that the equipment information can be 
obtained intuitively from the input image or video by 
using deep learning technique for this study. Instead of 
traditional machine learning algorithms, deep learning 
has higher performance in terms of object detection with 
the increase of the amount of data and extracts features 
by itself for reducing the complexity of the data [2]. In 
this study, a streamlined and intuitive technique based 
on convolutional neural network (CNN) is proposed to 
automatically process the images or videos captured by 
cameras and obtain the actual equipment information. 
The proposed framework of this technique is 
demonstrated in Fig 1a. It can not only enhance the 
number of load detection of equipment, but also collect 
an intuitive and real-time usage profile of office 
appliances which can be used to assign the operation 
settings of HVAC. 
    Therefore, the aim of this work is to develop a real-
time equipment usage detection strategy using the deep 
learning technique to optimize the efficiency of HVAC 
systems in office buildings. To achieve this aim, this study 
will cluster datasets from real offices and online sources 
for the training and testing process. A deep learning 
model will be developed, trained and tested for 
detecting various types of equipment such as PC, printer 
and kettle using the collected data. The deep learning 
model will be deployed in an actual office environment 
and carry out an experimental test using typical office 
cameras. Then, the deep learning model will be validated 
using the field data and energy modelling will be used to 
estimate the effect on the energy demand. 

2. EQUIPMENT LOAD SCHEDULING AND DETECTION 
TECHNIQUES FOR HVAC CONTROL 

In general, there are three techniques commonly 
found in commercial buildings to control HVAC by 
performing equipment prediction – following predefined 
schedule, or detection – using power meters and 
analyzing clustered occupant information. 

2.1 Follow the predefined schedule 

    Following the load schedules predefined by relevant 
standards, such as ASHRAE Standard 90.1 which is shown 
in Figure 1b [3], is a traditional and widely used method 
for the prediction of internal heat gains to perform the 

predictive control for the HVAC systems [4, 5]. In 
Menezes’s study [6], the usage profiles for different 
equipment in four states (transient, strict hours, 
extended hours and always on) were established based 
on the standards set in CIBSE Guide F and TM54. 
However, for a specific building, it may not be 
appropriate to apply the typical schedules to the control 
system because different types of buildings have 
different functions and features. Moreover, the 
stochastic and diversified information of the equipment 
patterns could not be reflected by the typical profiles in 
reality [7]. 

2.2 Collecting data from smart meters 

As the awareness of energy saving increases, a 
number of portable devices for measuring and visualizing 
the energy consumption of equipment are increasingly 
being utilized. More devices are being developed and 
employed in buildings for demand-driven controls 
recently. Power meters, which are installed on the 
equipment such as personal computers and printers, are 
frequently used for energy use measurement as 
investigated by studies [8-10]. However, considering 
deployment in energy intensive building such as 
commercial offices, it could be costly and impractical to 
install smart meters on every appliance. 

2.3 Analyze occupant information for equipment usage 
prediction 

    In previous occupancy detection studies, many 
techniques were developed to collect occupancy and 
thermal state information, which is further processed to 
predict the equipment usage within a space and then fed 
into the HVAC control system. Frequently used 
techniques for occupancy information collection are 
wireless ambient sensors [11], passive infrared sensor 
(PIR) [12], WIFI [13], radio frequency identification (RFID) 
[14], and cameras [15]. In recent studies, machine 
learning algorithms were commonly selected to 
implement data analysis, such as support vector 
machines (SVM), hidden Markov model (HMM), k-
nearest neighbor (KNN), and neural network (NN). 
Ortega et al. [11] proposed an approach to monitor 
occupancy behavior with the utilisation of the SVM 
method dealing with the complex datasets of different 
features gathered from wireless ambient sensors. 
Although the equipment load is strongly related to 
occupancy, this method is still limited due to the necessity 
of the combination with multiple sensors to improve its 
performance.  



 3 Copyright © 2019 ICAE 

2.4 Literature gaps and novelty 

    As reviewed above, only a few researches explored 
the detection and prediction of the magnitude and 
profile of equipment usage in offices. Thus, there are 
only a few studies which established models which are 
able to provide comprehensive equipment information 
for the optimal design, performance simulation and 
control of building systems instead of using typical 
profiles. Deep learning method has been popularly used 
in real-time detecting and predicting applications. Given 
this circumstance, the present approach in this study was 
proposed to fill these gaps by using a deep learning 
algorithm to detect real-time equipment information 
and generate the load patterns. 

3. METHODOLOGY 
    The simplified implementation framework of the 
proposed CNN-based deep learning approach in this 
study is presented in Figure 1a. Firstly, a large number of 
images is collected, resized if the original size differs from 
what required, and randomly divided into training, 
validation and testing sets in a certain proportion. After 
that, the model is optimized via a number of rounds of 
training and intermittent validations. Then the model is 
tested to evaluate the detection accuracy. Finally, the 

optimized model is utilized to detect the equipment 
status within a space and generate the usage profile.  

3.1 CNN-based deep learning strategy  

Before testing the algorithm, a dataset of images of 
different appliances within offices is required for the 
purpose of training and validation. Because there is no 
relevant dataset in previous and current researches, the 
dataset used in the present study is generated to address 
it. Through using web search, large amounts of images in 
different views, scale and illumination are collected from 
several offices. They are classified into four categories: PC 
in use, a printer in use, kettle in use and nothing in use. 
    Fig 2 shows the architecture of the network which is 
the initial configuration for equipment detection. It is 
composed of three convolutional layers, a fully connected 
layer and a softmax layer. A generalization with the 
reduction of spatial size is carried out on the input data 
when the input data goes through the architecture. Finally, 
the type of office equipment presented in each input 
image is predicted in the softmax layer after the fully 
connected layer.    

The convolutional layers in this structure all have 3*3 
image kernels that stride over the whole image, pixel by 
pixel, to generate 3D volumes of feature maps. The widths 
of convolutional layers are 8, 16, and 32 respectively. After 

 
Fig 1 (a) Proposed framework of CNN-based equipment detection (b) ASHRAE Standard 90.1 Internal heat gains schedule [3] 

 
Fig 2 Architecture of CNN equipment detection model with a software layer 
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each convolution operation, a function called ReLU, which 
is a non-saturated activation function used on the matrixes 
follows. For each trained layer, a convolutional operation 
and ReLU in the forward propagation phase is utilized. It is 
expressed as:  

𝑋𝑖𝑗
𝑘 = 𝑓(𝑊𝑘 ∗ 𝑥)𝑖𝑗 + 𝑏𝑘  (1) 

where f is activation function, 𝑏𝑘  is the bias for this 

feature map, 𝑊𝑘 is the value of the kernel connected to 
the kth feature map. For this study, max pooling is 
employed for all pooling layers. The softmax function is 
employed as the predictive layer. Its output demonstrates 
the probabilities of individual categories of each input. The 
metric used to evaluate the predictions is the multi-class 
loss function. 

3.2 Case study building and energy modelling 

The Mark Group house at the University of 
Nottingham was selected as the case study building. The 
initial experiment was conducted in the open plan office 
with a floor area of 24.5m2 and a height of 3m on the 
ground floor shown in Fig 3. Two cameras were set in the 
office to record the ground truth of equipment usage 
schedule on a typical weekday. The videos were captured 

from various locations and orientations in different sizes by 
a 5-minute time-lapse interval. With the implementation 
of CNN-based model, the equipment information was 
gathered from videos. 

To test the approach and estimate the energy use 
from office equipment, a Building Energy Simulation (BES) 
tool - IESVE was employed with the use of typical profiles 
and generated deep learning profiles. The U-value of the 
wall, roof, ground and glazing were 0.25, 0.15, 0.15 and 
1.78 W/m2K, obtained from architectural drawings. The 
window solar heat gain coefficient was 0.46 while the 
visible transmittance was 0.76. For the air exchanges, 
infiltration rate value was set to 0.1 ach. 

The Nottingham weather data file was used for the 
simulation. For the “typical office” profile, the building was 

assumed to be in use from 8:00 to 18:00. To simulate the 
internal gains from equipment, according to CIBSE Guide A 
[16], the equipment was set to six computers only 
because of less use of the printer and kettle. For the 
“deep learning” profile, the operation period could be 
directly obtained after implementing the CNN architecture 
and detecting the usage of each equipment. Due to the 
ability of detecting different appliances, the equipment 
was set to six computers, a printer and a kettle with 
sensible heat gains listed in Tab 1. The office thermal zone 
was maintained at 22°C during these periods. 
Tab 1 Heat gains of office equipment in use [16] 

 PC Printer Kettle 

Sensible heat gains (W) 113 88 12 

Latent heat gains (W) 0 0 8 

4. RESULTS AND DISCUSSIONS 

4.1 Model implementation results 

 

 

 

 
Fig 4 Equipment detection outputs 

 
Fig 3 Ground floor layout of the case study building 
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The proposed model was developed using MATLABR2019. 
To speed up the training, the CNN architecture, which is a 
computationally expensive and parallel task, was run on a 
Graphics Processing Unit (GPU) with 2560 CUDA cores, 
1607MHz graphics clock, 10 Gbps memory clock, and 8GB 
GDDR5X memory. The train accuracy is exceptionally up to 
99.6%. However, the test accuracy is 74.6% which is lower 
than train accuracy. This gap implied that there is an over-
fitting occurring in this model. The model has memorized 
the exact input and output pairs in the training set. And in 
order to do so, it has constructed an over-complex decision 
surface that guarantees the correct classification of each 
training example. That decision surface will include all the 
coincidences present in the input data, and this will make 
generalizing to new inputs (test data) work worse.  

4.2 Experimental results 

After inputting the collected video data to the deep 
learning model, the probability for each category is 
computed. The category with the highest probability is 
selected as the outcome. Example of the representative 

recognition results for four categories is presented in Fig 
4. The outcome in each case is PC, printer, kettle and 
nothing in use with the highest prediction score of 0.84, 
0.74, 0.86, and 0.94 out of 1 respectively. It implies that 
the proposed model deals well with the identification 
task. However, the specific angles of view and positions 
currently affect the accuracy of the prediction that it 
significantly limits the implementation of detection 
tasks. One of the main reasons is that the amount and 
quality of collected data are not great enough. It causes 
the model not to be able to accurately detect from a 
fresh input data which may have a new characteristic. 
    Based on the detection results, the usage patterns 
for each appliance are created and plotted in Fig 5. The 
schedules made by ground truth data and deep learning 
detection results are roughly similar. It illustrates that 
the detection results of the model do match the real 
profile of equipment usage. While some apparent errors 
existed during the period that people were frequently 
active such as lunchtime. Thus, the stability of the model 
is required to be improved to tailor the various changes 
of occupant and equipment status. The process will be 
automated in the future, i.e. the camera and deep 
learning model will detect in real time and at the same 
time process the data automatically to develop a 
schedule which feeds into the controller of HVAC. 

4.3 Modelling results 

    For assessing the effect on energy consumption of 
the deployed deep learning model profile, the sensible 
loads with typical and ground truth profiles were 
employed for comparison. Fig 6 presented the results of 
sensible loads based on typical, ground truth and deep 
learning profiles. These initial results highlighted that the 
deep learning approach for equipment detection could 
affect the energy use by making HVAC adapt to actual 
energy demands in real time. The cooling energy by using 
deep learning generated equipment load profile was 
predicted to be 11% lower in maximum as compared 
with using the typical profile. It should be noted that the 

 
Fig 5 Daily profile of each equipment on a typical weekday 

 
Fig 6 Sensible cooling loads from office equipment 
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case study building is sited in the region with a temperate 
maritime climate where the demands for heating are 
much more than cooling. The proposed model may work 
more effectively in regions with a warm and hot climate. 

5. CONCLUSION AND FUTURE WORKS 
In this study, a vision-based approach, which utilizes                                 

a pre-trained deep CNNs algorithm, is proposed for 
detection of the equipment usage in office spaces. The 
ability of this approach is initially examined based on the 
collected dataset. It achieved a high accuracy of 99.6% 
on the training dataset, and an accuracy of 74.6% on the 
test dataset. Moreover, the approach is applied to detect 
the equipment profile in a real open plan office and the 
output is used for energy simulation by IESVE to test its 
capabilities. The initial results showed that the utilization 
of the deep learning model for equipment detection 
could affect the energy use by making HVAC adapt to 
actual energy demands in real time. The cooling energy 
by using deep learning generated equipment load profile 
was 11% lower in maximum compared with using the 
typical scheduled profile. In practice, this method will use 
the profile to adjust the setpoint of the HVAC which will 
result in an increase or decrease of energy loads. 

The proposed approach shows significant potential 
for reducing energy demand in buildings. However, there 
are some limitations that should be solved in future 
works. The model is evaluated only using limited dataset. 
To improve accuracy, using more dataset collected from 
different types of office and equipment is intended due 
to the various characteristics in different dataset. 
Second, an optimal ratio for data division is proposed to 
reduce the overfitting to narrow the gap between train 
and test accuracy. Third, a more advanced equipment 
load detection model based on the present approach, 
which will be embedded in a camera, is expected which 
can automatically create real-time usage patterns and 
send them to a control system. Moreover, examining the 
performance of the designed model in the regions with a 
hot climate may be more effective and possible to 
achieve a larger potential of energy savings. 
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