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ABSTRACT 
The renewable power systems have become more 

susceptible to the system insecure than traditional 
power systems due to the reducing inertia and damping 
properties. In the meantime, inevitable time delays 
commonly exist in different procedures of the energy 
systems, such as computational delay, which may lead to 
poor performance, or even instability. Therefore, the 
time-delay impacts should be properly taken into 
account. However, the time-delay system belongs to the 
class of functional differential equations mathematically. 
With a transcendental characteristic equation, infinite 
dimension will increases transformation complexity and 
computation pressure. 

To rapidly describe the time-delay impact for multi-
area power systems with time delays, a dimension 
reduction method based on the solution operator 
discretization is proposed in this paper. The quantitative 
relationship between time delays and system damping 
ratio is revealed for the first time. It starts with a state 
space equation for the entire frequency regulation 
system, the spectrum of time delayed systems is 
transferred into the spectrum of infinite-dimensional 
operators, followed by discretizing the solution operator. 
After that, a simple approximate matrix of finite 
dimensions is established, which sufficiently reflects the 
effect of time delays. The proposed method can not only 
ensure low computational burden efficiency via 
dimension reduction, but also extract the nonlinear 
coupling between the time delay and the damping 
deterioration. 
 
Keywords: renewable energy resources, dimension 
reduction, time delays, solution operator discretization.  
 

1. INTRODUCTION 
Nowadays, renewable energy sources (RESs) are 

attracting increasing attention as a solution to the 
problem of energy shortage. Traditional generations are 
being replaced by a large amount of RESs (e.g. wind and 
solar energy)[1]. The traditional synchronous generators 
(SGs) stored kinetic energy in their rotating mass and so 
they can provide inertia to the system. Also, they provide 
damping property for the grid through mechanical 
friction and electrical losses. However, short of rotating 
mass, the inertia of renewable power systems 
significantly falls. With increasing the penetration level 
of RESs into the grid, the influence of low inertia and 
damping on the dynamic system performance and 
stability increases, which induces frequency fluctuation. 
Therefore, the frequency control may be difficult in case 
of mismatch between electric power generation and 
load demand, with growing RESs penetration.  

On the other side, with the continuous expansion of 
the power grid and the continuous developing in 
electrical loads[2], the interconnection among different 
power systems is strengthened. More and more time 
delays are penetrating into power systems, including the 
measurement and control loop, which leads to the 
appearance of the oscillations problems[3]. Identification 
of oscillation frequency, damping ratio, oscillation mode, 
and other parameters play a vital role in the 
management of dynamic characteristics, the subsequent 
control, and the secure operation of the system. 
Therefore, a characteristics and damping ratio extraction 
method is important for further analysis and controller 
design. However, most methods assume that time delays 
are negligible[4]. Obviously, these are inaccurate and will 
cause errors in the stability analysis and controller 
design. Some researches have modeled time delay as an 
exponential Laplace delay operator, the transcendental 
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terms would be induced into the system characteristic 
equation, causing infinite dimensionality. Therefore, it is 
extremely difficult to directly solve this equation and 
analyze the system. Besides, the existence of multiple 
delays may increase the transformation complexity and 
computation pressure. To solve these problems, an 
effective damping ratio extraction method based on the 
solution operator transformation for delayed frequency 
regulation systems is proposed in this paper. A simple 
approximate matrix based on the solution operator is 
structured. According to the Spectral Mapping Principle, 
the eigenvalues and the corresponding eigenvectors of 
the delayed system can be obtained by computing the 
nonzero eigenvalues of the approximate matrix, which 
reflects the damping ratio, oscillation frequency of the 
system and the correlation of state variables. These 
reveal the qualitative and quantitative information of 
system modes, which can also be combined with various 
algorithms for stability analysis and controller design. 
Meanwhile, the dimension of the time-delay model is 
significantly reduced ensuring low computational burden 
and high effectiveness. 

2. SYSTEM MODELING  
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Fig 1 Dynamic model of multi-area LFC scheme. 

For a multi-area load frequency control (LFC) 
scheme, as shown in Fig 1, all generation units in each 
control area are simplified as an equivalent generation 
unit. For area i, the dynamics are described as 
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where
im

P ,
iv

P , i
f ,

iL
P are the deviations of the 

generator mechanical output, turbine valve position, 

frequency, and load respectively.
ic

P is load reference 

set-point, i

tie
P is the net exchange of tie-line power of 

the ith control area,
i

M is the inertia of generator i;
i

D is 

damping coefficient of generator i;
ig

T is time constant of 

governor i;
ich

T is time constant of turbine i; ij
T is 

synchronizing power coefficient;
i

R is speed droop 

coefficient. 
The area control error ACEi in a multi-area LFC is 

defined as 

ii i i
ACE f P    tie              (5) 

For each area, the dispatch center is designed as 

( )i pi i Ii iu t K ACE K ACE              (6) 

Based on the dynamic equation above, the state-
space model for the ith control area can be obtained 
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 1/ 0 0 0 0
T

i i
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The time-delay model of the multi-area power 
system can be described by following delayed differential 
equations.  
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where is the initial system state.  
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 1d n
diag  A BKC     B B B    (18) 

   1 1
    

n n
diag diag K K K C C C     (19) 

The characteristic equation of (14) the system is 

( )i

de v v
 

 A A             (20) 

where  is an eigenvalue and v is the corresponding 

eigenvector. 

3.  SOLUTION OPERATOR-BASED METHOD 
In order to avoid directly solving equations (20), the 

spectrum of time delayed systems is transformed into the 
spectrum of the solution operator first. The operator is 
then discretized, resulting in a finite-dimensional 
discretization matrix. The minimum damping ratio and 
the dominant oscillation frequency of the time-delay 
power system can be rapidly derived from the matrix. 

The details of the theoretical foundation of the 
extraction method are as follows. 

3.1 Theoretical foundation 

The solution operator T(h) maps the initial condition 
ϕ at t into the system state at t + h, where h is the 

transfer step length satisfying max0 h    
( ( ) )( ) ( ) ( )hh t t t h    T x x          (21) 

Eigenvalues μ of T(h) can be obtained from 
eigenvalues λ of multi-area LFC 

 ( ( )) 0he h   ， T \          (22) 

( )  denotes the spectrum of an operator or a matrix. 

\ denotes the operation of set difference. The 
eigenvalues in s-plane are then transformed into 
eigenvalues of T(h) in the z-plane. 

3.2 Solution operator discretization scheme 

The rightmost eigenvalues λ with the largest real 
parts of systems can be recovered from μ with maximum 
moduli. 

The problem is transformed into computing μ from 
T(h), which is an infinite-dimensional problem. To reduce 
the complexity, the operator T(h) could be discretized by 
implicit Runge-Kutta methods first. The eigenvalues can 
then be computed from the resultant finite-dimensional 
discretized matrix. 

First, the N sub-intervals of length h are discretized 
by the abscissae of a p-order s-stage implicit Runge-Kutta 
method, resulting in a set of discrete points. 

According to (21), T(h) has two segments: 

1) Time Integration: when  ,0t h  , ( )tx can be 

computed from the following equation by p-order s-
stage implicit Runge-Kutta method: 

( ) ( ) ( )h h d h it t t      x A x A x        (23) 

2) Shift: For  max ,t h   , T(h) is a shift, ( )h tx is 

always the initial condition part.  
In summary, T(h) can be reformulated as follows. 
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By applying IRK and using the shift property to 
assess system states at the points of ΩNs, the approximate 
matrix TNs to T(h) is obtained. 
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where s sRA is formed of elements in the Butcher’s 

tableau, 1
Ns sRL are constant Lagrange interpolation 

matrices.  
Then, both system characteristics and time delays 

can be reflected in the finite-dimensional approximate 
matrices to T(h), i.e., TNs. 

4. SPACE TRANSFORMATION 
To improve computing efficiency, a space conversion 

technique is presented to shift the desirable eigenvalues 
so that they become dominant in moduli. 

Eigenvalues λ are first rotated by ( arcsin( ))  in 

counterclockwise direction, which is then amplified by α 
times to increase the relative distance between them. 

''      'h je e                (27) 
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After space transformation, the discretized matrix of 

the solution operator NsT turns to 'N sT  
1
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5. KRYLOV SUBSPACE DIMENSION REDUCTION 
The discretized matrix after system space 

transformation contains the parameters of oscillation 
frequency, damping ratio, and oscillation mode. And 
simplification from infinite dimension to finite dimension 

is realized, but the dimension of the matrix 'N sT is still 

large. Therefore, it is necessary to obtain a reduced-
dimension matrix that retains the important properties 
of the original system. A structure-preserving reduction 
algorithm is presented based on a Krylov subspace.  

The algorithm is developed under the framework of 
projection. We use a second-order Krylov subspace as 
the projection subspace. Subsequently, an Arnoldi 

method is used to generate an orthonormal basis mV of 

the projection subspace as follows:  
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where ,m mH H are m-order and m×m-order upper 

Hessenberg matrix respectively. If mf is small enough, the 

eigenvalues of mH will approach the eigenvalues of 

matrix 'N sT infinitely. So the eigenvalue of mH is used as 

the approximate eigenvalue of 'N sT . 

The resulting reduced matrix mH not only preserves 

the structure but also reduces the dimensions. 

6. DAMPING RATIO EXTRACTION 
In actual systems, the critical electromechanical 

oscillation modes determine the system stability. The 
corresponding minimum damping ratio and dominant 
oscillation frequency are what we really care about, 
which can be obtained by calculating the critical 
eigenvalue of reduced-dimension matrix Hm. 

The eigenvalue is usually expressed as a conjugate 
pair of = j   . When the real part is positive, the 

oscillation of the system will increase. When the real part 
is negative, the dynamic mode of the system is an 
attenuation oscillation. The oscillation frequency is 

determined by the imaginary part of the eigenvalue, and 
the magnitude is / 2f   . The minimum damping ratio 

is determined by the real part of eigenvalue, and the 
value is 

2 2/                  (31) 

When 0  , it is an unstable oscillation mode; when

=0 , it is a critical stable oscillation mode; when 0  , it 

is a stable oscillation mode. The larger damping ratio 
indicates a more stable system. 

7. CASE STUDY I: TWO-AREA LFC SCHEME 
Case studies are carried out based on a two-area LFC 

scheme first. Parameters are tabulated in [5], [6]. The 
dominant oscillation frequency and the minimum 
damping ratio of each LFC scheme with respect to gains 
of the PI controller (KP, KI) are calculated based on the 
extraction method proposed.  

First, the relationship between time delay and 
system damping are summarized in Fig 2 and Fig 3, 
respectively. It can be found that, with the increase of 
the time delay , the dominant oscillation frequency f

increases first and then decreases, while the minimum 
damping ratio stays the same first and then significantly 
decreases. And the changing curves both have tipping 
points, which are different with respect to the different 
gains of PI controllers. It is also shown that a relatively 
larger minimum damping ratio can be obtained under 

smaller KP and KI, and is reduced sharply for bigger KP 

and KI. Small changes in Kp may cause a significant change 
of f and  . When Kp increases to a certain extent, the 

mutation occurs for both f and . 

 
Fig 2 Dominant oscillation frequency f  (two-area LFC ) 

 
Fig 3 Minimum damping ratio   (two-area LFC ) 
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Thus, (KP,KI) should be properly chosen to have a 
larger minimum damping ratio and a smaller dominant 
oscillation frequency with a relatively small degradation 
of the dynamic performance. During the design and 
tuning of the controller, a trade-off between the delay 
margin and dynamic performance can be achieved. 

Table I. Minimum damping ratio  (KP,KI) 

(two-area LFC =20s ) 

  KI 

Kp 0.05 0.1 0.15 0.2 0.4 0.6 1 

0 0.194 -0.136 -0.278 -0.362 -0.522 -0.593 -0.665 

0.05 0.221 -0.127 -0.273 -0.359 -0.521 -0.592 -0.664 

0.1 0.247 -0.119 -0.269 -0.357 -0.520 -0.592 -0.664 

0.2 1.000 -0.104 -0.262 -0.352 -0.518 -0.591 -0.664 

0.4 -0.002 -0.088 -0.252 -0.344 -0.515 -0.589 -0.663 

0.6 -0.011 -0.012 -0.247 -0.341 -0.513 -0.588 -0.662 

1 -0.024 -0.024 -0.024 -0.024 -0.512 -0.586 -0.661 

Table II. Minimum damping ratio  (KP,KI)  

(two-area LFC =5s ) 

  
KI 

Kp 0.050 0.100 0.150 0.200 0.400 0.600 1.000 

0.0 1.000 1.000 1.000 1.000 -0.172 -0.309 -0.439 

0.05 1.000 1.000 1.000 1.000 -0.164 -0.305 -0.437 

0.1 1.000 1.000 1.000 1.000 -0.157 -0.301 -0.435 

0.2 1.000 1.000 1.000 1.000 -0.145 -0.295 -0.432 

0.4 1.000 1.000 1.000 1.000 -0.131 -0.286 -0.427 

0.6 0.005 0.005 0.004 0.004 -0.135 -0.283 0.424 

1 -0.045 -0.046 -0.046 -0.047 -0.186 -0.296 -0.424 

And simulation studies are used to verify the 
effectiveness and accuracy of the proposed method. The 
delay margin (KP=0.05,KI=0.05) calculated by the pro-
posed method is 31s (the simulation step is 2s). By 
comparing with simulation, which is coincident with 
simulations in Fig 4, Fig 5. The result also shows that time 
delay causes the whole system oscillation due to the 
damping loss. 

 

Fig 4 Frequency variation (KP=0.05,KI =0.05) with =30s  

 
Fig 5 Frequency variation (KP=0.05,KI =0.05) with =32s  

8. CASE STUDY II: THREE-AREA LFC SCHEME 

Similar calculations are carried out for a three-area 
LFC system. KP and KI are changed simultaneously 
obtaining results in Fig 6 and Fig 7. The anti-damping 
effect of time delay is shown in Fig 8. 

The results show that the gain of the PI controller is 
one of the key factors affecting the minimum damping 
ratio and dominant oscillation frequency. Changing the 
gain in a certain range has no substantial influence of f

and  . But if the gain is increased above the range, a 

small change may lead to a significant change of f ,  . 

With the same parameters, the increase of the time 
delay will decrease the minimum damping ratio. 

 
Fig 6 Dominant oscillation frequency f  (three-area LFC) 

 
Fig 7 Minimum damping ratio  (three-area LFC ) 
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=5s

=20s



 

Fig 8 Minimum damping ratio   (KP,KI)  

9. CONCLUSIONS 
In this paper, an effective damping ratio extraction 

method based on solution operator transformation is 
presented for frequency regulation systems considering 
time delays. The contributions are summarized as below: 

First, the dimension reduction of the model with 
time delay is realized through solution operator 
transformation, which ensures high efficiency. 

Second, the coupling of controller and time delay is 
revealed influencing the dominant oscillation frequency 
and the minimum damping ratio. Due to the time delay, 
 is reduced sharply for bigger KP and KI. A small 

increment of the controller gains may lead to a 
significant decrement of the damping ratio.  

Third, the time-delay impact is imposed with low-
frequency oscillation and damping loss causing the 
system instability. 
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