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ABSTRACT
With increasing number of Electric

Vehicles(EVs) ,more attention is being paid to EV’s
charge stations. These stations play an essential role in
EV industry chain.Choosing the optimal locations for
these stations is becoming vitally important. Not only
for power loss reduction,but also for power system
security. In this paper a novel optimal charge station
location method is informed based on active and
reactive power flow analysis by using Genetic Algorithm
(GA) in terms of power loss minimization.Results for
the36-bus Distribution Network (DN) are presented.It is
demonstrated that installing three stations in optimal
locations in the tested network, power loss reduces by
0.088 MW, compared with the situation with two
stations.

Keywords: charge stations’location, EVs, active and
reactive power flow analysis, GA optimisation, power
loss reduction.

NONMENCLATURE

Abbreviations

EV Electric Vehicle
GA Genetic Algorithm
DN Distribution Network
BESS Battery Energy Storage System
DG Distribution Generation
PCS Power Conditioning Systems
DS Distribution System
SOC State of charge

1. INTRODUCTION
Electric vehicles(EVs) are becoming cheaper and

less environmentally damaging alternatives, to
traditional vehicles. However a great number of EVs
charge simultaneously can increase the Distribution
Systems(DSs) power losses significantly[1][2]. How to
reduce the power losses cased by these EVs is being
paid more attention than before.

Previously, some researchers optimized capacitors’
locations in Distribution Networks (DNs) by using
planning method to reduce the power losses[3]. Ref.[4]
used phase load balancing method by removing load
imbalances in the radial network for loss reduction.
Ref.[5][6]concentrated more on the optimal planning
and economic aspects of a charge station for EV; by
considering various costs, to achieve comprehensive
cost and energy loss minimization.Ref.[7] considered
optimal scene method to simulate the randomness of
DG and load to reduce power loss in DNs.

Unlike these methods,the proposed method in this
paper uses Genetic Algorithm (GA) based on power flow
analysis to find the optimal locations for charge stations
for power loss reduction in tested 36-bus DN.The
structure of this paper is as follows: In section two
theoretical analysis is given, the DN modeling, EV power
demand modelling and charge station structure are also
introduced. GA is used for the case studies and results
discussion. In section three, a 36-bus DN with one
charge station is used as case study and the GA
simulation results are discussed. In the final section, the
conclusions of this paper are given.
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2. THEORETICAL ANALYSIS

2.1 SystemModeling

2.1.1 Distribution Network Modelling

This paper uses 36-bus DN [8] without any
modifications as the tested network.The 36-bus DN
voltage is 11KV and the total active reactive load are
3.97MW and 2.08Mvar. The system’s topology is shown
in Fig.1.

Fig 1 The topology of 36-bus distribution network

2.1.2 Electric Vehicle Modelling

The power demand of each type of EV can be
calculated by using Eq. (1) [9].
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where ���㚠䏄 is the power demand of the EV at any

timeslot t. �� is the SOC of EV’s battery. ���㚠䏄 is the
SOC at the beginning of t. �� is the capacity of the EV.
�� is the battery charging efficiency of the EV, ��㚠䏄� is
the EV’s average charge time.The total power demand
of all EVs can be express as shown in Eq2.
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where �� 㚠 is the total power demands of all types
of EVs. �� 㚠 � , �� 㚠 � , �� 㚠 � , and ��㚠㚠 are the power
demand for each type, i.e. Chevrolet, Nissan Leaf, Prius,
and Tesla.

Table 1
Characteristic of the EV

EV Types Level 1 Charge Level 2 Charge

DC Fast

Power

Demand

Time PD Time PD Time

Chevrolet

Volt

0.96-1.4

kw

5-8

hours

3.8kw 2 hours n/a n/a

Nissan Leaf 1.8

kw

12-16

hours

3.3kw 7 hours 50kw

+

15-30

m

Prius 1.4kw

(120v)

3 hours 3.8kw

(240v)

2.5hours n/a n/a

Tesla

Model S

1.8kw 30+

hours

16.8

kw

4 hours n/a n/a

2.1.3 Charge station Modelling
The combined Battery Energy Storage System

(BESS) charge station is different compare with the
traditional charge station. Traditional stations are not
able to store off-peak energy and sell it to EVs and local
residents at any time. Whereas, BESS can make the
profits by utilizing electricity price differences between
peak and off-peak times. The configuration of the
stations can be seen in Fig.2.

Fig 2 Charge station’s configuration.
The charge station consists of BESSs, normal

charging points and relevant charging facilities such as
transformers, active and reactive compensators,
inverters and converters, and charge paces.The BESS
consists of batteries and Power Conditioning Systems
(PCS)[10][11].A simple PCS consists of electronic devices
such as capacitors, diodes and transformers, Based on
the independent and rapid control capability of the PCS,
active discharge and reactive power dispatch were set
as controlled variables when identifying charge station’s
optimal location. It is noted that active power can be
either charging or discharging at any given time.

2.2 Genetic Algorithm Implementation

GA is the most widely used artificial intelligence for
optimisation. It has been used in power systems to
solve power flow calculations, economic dispatch, and
unit commitment. GA is used in this paper to find the
optimal locations for charge stations because it is

http://en.wikipedia.org/wiki/Chevrolet_Volt
http://en.wikipedia.org/wiki/Nissan_Leaf
http://en.wikipedia.org/wiki/Tesla_Model_S
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designed for solving large-scale optimisation problems
and can be much quicker than the conventional
mathematical optimisation methods.

The goal for GA is to find the best charge stations’
locations to minimize network power loss. The fitness
function based on active and reactive power flow is
shown in Eq. (3).
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Where ��
� and ��

� are the injection active power
and reactive power to bus S2 respectively [12]. fj is the
fitness function of GA.The The ��� � is the resistance
between two charge stations. N is the test system’s
total bus number. ���䏄 and ���䏄 are the active and
reactive discharge power of station. ����� is the load
at bus ��. ���䏄 is active power injection from bus ��.
The series impedance and shunt admittance between
bus S1 and S2, are (�� � � �� ) and Yi/2 respectively.The
variables are Pdis2 = x1 , Qdis2 = x2 , Pm2F = x3 , and Qm2F =
x4. GA is used to decide charging station two’s optimal
location for power loss minimisation. The GA setting is
shown in table 1 below:

Table 1 GA’s setting

3.CASE STUDY AND RESULT DISCUSSION
In the case study, there are only two charge

stations in the test 36-bus DN. The first charge station
has already been installed in bus two because the
largest power loss occurs between bus one and bus
two[12]. The same 36-bus test DN, used in
reference[12], is chosen and shown in fig.3.

Fig 3 The topology of36-bus distribution network

The GA results can be seen from fig.4 and fig. 5. The
EVs are connected to bus 7, 13 and 18 randomly; as can
be seen from fig.3. From fig.4 it can be seen that the
optimal location for charge station two is bus 32.

Fig 4 The fitness function’s values of36-bus DN

Fig. 5 shows the best and mean fitness values and
average distance between each individual in the GA.
They were obtained by using the GA settings in table 1.
Fig. 5 upper plot shows the best and mean fitness
values coincide at the same point at generation number
55: after this number, the best fitness and mean fitness
values are the same. The GA has found the best solution
to the problem.

Fig 5 Fitness value of default settings(Upper plot)

Population size 300
Crossover Probability 0.8
Mutation Probability 0.2
Stall Generations 300
Current iterations 100
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Fig 5 Fitness value of default settings(Lower plot)

From the lower plot in fig.5, we can see that around
generation 230, the average distance between
individuals becomes zero, which means all the
individuals are the same. The best solution has been
found. The average distance between each individual
also shows the diversity of the population. If the
average distance between individuals is large, then the
diversity is high. If the distance is small, the diversity is
low. Getting the right amount of diversity is very
important for using GA. If diversity is too high or too
low, the GA might not perform well. fig. 8.4 shows the
best and mean fitness values, and average distance
between each individual in the GA.

Installing reasonable numbers of charge stations
can significantly decrease the test DN’s power loss.By
using the same method, installing three stations in
optimal locations in the tested network, power loss
reduces by 0.088 MW, compared with the situation
with two stations. Compared with installing three
charge stations, with six charge station, power loss is
much lower.The network power loss reduces by
0.84MW when three more stations are installed in the
network.

4.CONCLUSIONS

In this paper we used a novel GA method base on
active and reactive power flow analysis for charge
station location optimisation for power loss
reduction.This method was tested in 36-bus DN,it has
been shown that install three charge stations in optimal
location the power loss can be reduced by 0.088MW. By
installing three more charge stations in the tested DN
0.84MW power loss can be decreased.

REFERENCE
[1]Cole.J.2013InsideEVwebpage.[online].Available:http:
//insideevs.com/september-2013-plug-in-electric-
vehicle-sales-report-card
[2]Wang C , Dunn R , Lian B . Power loss reduction for
electric vehicle penetration with embedded energy
storage in distribution networks[C]// Energy
Conference. IEEE, 2014.
[3]Park J Y , Sohn J M , Park J K . Optimal Capacitor
Allocation in a Distribution System Considering
Operation Costs[J]. IEEE Transactions on Power
Systems, 2009, 24(1):462-468.
[4]D. K. Chembe. Reduction of Power Losses Using
Phase Load Balancing Method in Power Networks.
Lecture Notes in Engineering and Computer Science.
2009.12: 492-497.
[5]Xu F, Yu GQ, Gu LF, Zhang H. Tentative analysis of
layout of electrical vehicle charge stations. East China
Electr Power 2009;37:1678–82.
[6]Yao Weifeng, Zhao Junhua, Wen Fushuan, Dong
ZhaoYang, Xue Yusheng, Xu Yan, et al. A multi-objective
collaborative planning strategy for integrated power
distribution and electric vehicle charge ystems. IEEE
Trans Power Syst 2014;29(4):1811–21.
[7]Guan-Xiang W , Wen-Ping G , Jing-Dan L , et al.
Distribution Network Reactive Power Optimization and
Loss Reduction Strategy Considering DG Randomness[J].
Automation & Instrumentation, 2018.
[8]Ching-Tzong Su, Chen-Yi Lin, Ji-Jen Wong, Optimal
Size and Location of Capacitors Placed on a Distribution
System, WSEAS Transactions on Power Systems, Vol. 3,
Issue 4, 2008, pp. 247-256.
[9]Walker LH. 10-MW GTO converter for battery
peaking service. IEEE Trans Ind Appl 1990;26(1):63–72.
[10]Miller NW, Zrebiec RS, Hunt G, Deimerico RW.
Design and commissioning of a 5 MVA, 2.5 MW h
battery energy storage system. In: Proc IEEE transaction
distribution conf, Los Angeles, August 2007. p. 339–45.
[11]Gabash A, Li P. Active–reactive optimal power flow
in distribution networks with embedded generation and
battery storage. IEEE Trans Power Syst
2012;27(4):2026–35.
[12]Wang C , Dunn R , Robinson F , et al. Active –
reactive power approaches for optimal placement of
charge stations in power systems[J]. International
Journal of Electrical Power & Energy Systems, 2017,
84:87-98.


	2.1.1 Distribution Network Modelling  
	2.1.2 Electric Vehicle Modelling  

