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ABSTRACT 

Wind turbine pitch systems play an important role in 
wind energy extraction. Such systems are known to 
suffer high failure rates resulting in long downtime 
maintenance. Consequently, industries wish to utilize 
failure prognostic techniques to schedule effective 
maintenance in order to reduce losses. A cost-effective 
method that analyses existing data collected from the 
built-in sensors in the wind turbine (WT), such as the 
supervisory control and data acquisition (SCADA) data is 
presented in this paper. Information such as wind speed, 
power generation and subsystem measurements are 
collected for every 1 second resulting in large datasets. 
By combining a SOM clustering technique and radial 
basis function neural network (RBFNN), patterns are 
revealed while reducing redundant information. The 
performance of the WT failure prediction system was 
evaluated and tested using 37 sensors from SCADA data 
for a single WT in Levenmouth, Scotland. A failure state 
classification accuracy of between 96%-99% was 
observed.  
 
Keywords: wind energy, self-organizing map, k-means, 
radial basis function neural network, clustering, 
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1. INTRODUCTION 
Unscheduled maintenance of unexpected failures 

usually has a great impact on the operation and 
maintenance (O&M) cost [1]. To minimize the cost, 
efficient failure prediction is desired. As wind turbines 
(WTs) have expanded to the offshore because of the 

persistent wind source the operational condition is more 
severe than on the land. Salt particles contained in the 
wind and seawater may accelerate corrosion and aging 
problems [2]. The accessibility is also limited by the 
distance between site and shore due to the sea wave is 
largely influenced by weather conditions. For safety 
reasons, human intervention should be managed 
effectively.  

An effective pitch system is important in energy 
production performance. By adjusting the angle between 
blades and wind, energy from wind can be extracted with 
optimum efficiency. By surveying several wind farms in 
Europe with an 8-year period, work [3] shows that the 
pitch system also occupying the highest failure rate, 
although there was no requirement of major 
replacement such as generator or gearbox.  

 

 
Fig 1 Sub-system Components Failure Rates and Their Cost 

Categories [3] 
 

There are varied Non-Destructive Techniques (NDT) 
in the condition monitoring (CM) category, such as visual 
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inspection and vibration analysis [4]. However, the 
former requires in situ examination, which consumes 
time. The latter may require additional sensors and the 
signals may be affected by the noisy background. A 
model-based approach [5] was developed, which took 
into account different motor behaviours and processed 
the current signals in the frequency domain. Work [6] has 
developed an algorithm-based method for pitch system 
diagnosis. By combining regression and classification 
models, an online failure detection technique based on 
Supervisory Control and Data Acquisition (SCADA) data 
was developed in [7].  

According to its economical characteristic, the sensor 
information in the SCADA data was considered. The 
SCADA is a data collection system that records the signals 
through pre-built sensors in the WT. Comprehensive 
information such as subsystem measurements, weather 
parameters, health states and alarms are usually 
recorded as 10-min averaged value for CM purposes. In 
our research, a higher frequency data (sampled at 1 Hz) 
was utilized. Intuitively, higher frequency data is more 
easily affected by noise and the noise can be mitigated 
by an averaging process. However, this process may lead 
to information loss. Study [8] shows that by using higher 
frequency SCADA data, a reliable power curve can be 
estimated from a small number of data for WT 
monitoring because of an increase of information. Study 
[9] provides evidence that accurate power curve model 
and improved detection abilities can be achieved 
through higher sampling data. This is because it provides 
a deeper understanding of WT dynamic behaviours. 
Although wind power curve can indicate various failures 
by analysing different deviations to the normal values, 
the modelling process can be affected by inconsistent 
data and data quality [20]. 

Higher sampling rate will result in a large dataset. To 
reduce the computational complexity, the information of 
data is compressed and clustered by PCA and SOM. With 
learning the clustering properties, the pitch faulty state 
should be well predicted through the RBFNN. The 
structure of this paper is organized as follows. 
Explanations of the specification of the involved WT are 
summarized in section 2. Theory and methodology are 
included in Section 3. Results with analysis are shown in 
Section 4. The summary of work is in Section 5. 

2. THE LEVENMOUTH WIND TURBINE 

2.1 Wind turbine specifications 

In our research, the data used for simulation was 
collected from the Levenmouth (Scotland) 

Demonstration Turbine and provided by the Offshore 
Renewable Energy (ORE) Catapult company. The turbine 
is 7 MW with 574 SCADA signals. According to the 2-year 
downtime analysis provided by the company, the pitch 
system was found to generate frequent failure alarms. 
With both long downtime hours and high alarm counts, 
failure prediction needs to be emphasized for the pitch 
system. Unlike commercial WTs, this turbine is a 
prototype and is used for academic testing purposes. 
There are several limitations should be considered due 
to its unique design. Firstly, the training and benchmark 
data are lacked for simulation. Secondly, for the reason 
of its design defect, noise is produced when the WT is 
facing a certain direction. This will lead to an artificial 
shutdown in preventing noise pollution to the nearby 
residents. Research activities and maintenance are also 
executed frequently, which results in a discontinuous 
operation mode. Since human intervention may trigger 
false alarms, the quality of SCADA data then becomes an 
issue for analysis purpose [10]. 

 

2.2 SCADA dataset and the pitch states 

Before pre-processing, there are 51 variables from 
pitch system and general parameters such as power, 
wind speed and temperatures. However, the sources are 
uncleared for some variables. Such variables and 
variables with logic units are removed together with 
missing data, and 38 variable left. The pitch states and 
the number of training samples are shown in Table 1. Our 
target is to be able to identify the failures (state 3). 
 

Current pitch state Code Candidates 

PITCH_STATE_STANDBY 0 18941 

PITCH_STATE_ENABLED 1 28517 

PITCH_STATE_BATTERY_TEST 2 0 

PITCH_STATE_FAULTED 3 29405 

PITCH_STATE_OTHER 4 699 

Table 1 Pitch States 

3. WT PITCH SYSTEM FAILURE PREDICTION SYSTEM 
The system is consisting of two stages: information 

compression stage and neural network prediction stage. 
The first stage is combined with PCA, SOM and k-means. 
PCA is used for dimensionality reduction, SOM is applied 
for compressing data in its codebook and clustering. 
Utilizing k-means is for clustering refinement, and also 
important for the RBF neuron centres initialization and 
spread constant determination. In the second stage, the 
RBFNN is trained and tested for classification. The system 
procedure is illustrated in Fig 2. 
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Fig 2 System Flowchart 

 

3.1 Stage 1: Information Compression 

3.1.1 PCA and SOM  

Since the dataset is large, a time range from 10 
minutes before to 10 minutes after the failure 
occurrence was selected. The reason for choosing a time 
window is that data integrity may be affected by human 
activities and some failures only last a few seconds, also 
the occurring time was not always consistent with the 
record. The selected data contains three normal 
operation states (state 0, state 1, state 4) and a faulty 
state (state 3). There are no values for state 2 and a small 
amount of state 4 data within the selected data, which 
becomes one reason for poor classification in the results.  

PCA is a popular technique used for removing 
redundant information. There are 7 principal 
components (PCs) containing more than 95% of most 
useful information are obtained over this step. They are 
then fed into SOM (Fig 3). 

SOM is an unsupervised neural network based on the 
competitive learning principle. The advantages of 
applying SOM is that is has simple interpretation and 
visualisation [19]. The learning process can be thought of 
as a net of similar neurons spanning among the input 
data. The map size is determined as : 

𝑀 ≈ 5√𝑆                                        (1) 

where 𝑀 is the total number of neurons, and 𝑆 is the 
number of total training samples. This is slightly different 
from the formula proposed in work [11], where 𝑆  is 
referring to the number of rows in the training data 
matrix. 

 
Fig 3 Illustration of SOM [12] 

 
Depending on different randomly distributed 

parameters, neurons will respond to the input data with 
similar characteristics. The neuron that receives the 
largest input is the “winner” and will reach its maximum 
value. While others within the cluster will be set to 
minimized values. There is a certain amount of weight of 
each winning neuron, during the learning process, the 
system will shift the weight position to reach an 
equilibrium state. Finally, similar input data will be 
gathered together and remain efficient distance to 
separate different patterns [13]. Those winning neurons 
are also called the Best Matching Unit (BMU). Since the 
quantity of BMUs is sufficiently smaller than inputs but 
has learned most “structural” features, information is 
then compressed. 

 
3.1.2 RBF Parameters Determination 

One of the widely used RBF is the Gaussian function: 

𝐻 =  𝑒−||𝑥−𝜇||2/2𝜎2
                                  (2) 

where  𝑥  is represented as input vectors, 𝜇  and 𝜎2 
are the centre and variance (spread constant) of the 
hidden units. Improper selection of spread constant may 
require more neurons for fitting either a fast-changing or 
a smooth function and further increase the 
computational complexity [14]. In order to simplify 
computation, the clustering properties are used to 
calculate the spread constant.  

The k-means algorithm is applied after the SOM, for 
clustering improvement. Its centroids are used as the 
Gaussian neuron centres. The integer k is treated as an 
unknown variable in our research. By setting the 
maximum number of 10 iterations, the optimum number 
of clusters is obtained according to the Davies-Boulding 
Index (DBI) [15]. The DBI computes the ratio between 
intra-cluster similarity and inter-cluster difference, and 
the best classification result can be said to be done with 
the lowest value. The spread constant is then calculated 
according to equation (9): 
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𝜎spread = 𝑑𝑚𝑎𝑥/√𝑘                               (3) 

where 𝑑𝑚𝑎𝑥  is the maximum distance between two 
centres, 𝑘 is the number of clusters.   
 

3.2 Stage 2: RBFNN Training 

The RBFNN is a three-layer feedforward neural 
network, it consists of input layer, hidden layer and 
output layer. There is one hidden layer that contains 
nonlinear units, who locally respond to the input data 
with a minimum distance. It is one of the favoured 
techniques for function approximation because of its 
robust tolerance to input noise [16]. Since there is only 
one single hidden layer, an RBFNN can be trained with 
less complexity compared to multilayer neural networks.   

 
Fig 4 Radial Basis Function Neural Network [17] 

 
The units with unknown “weights” connected 

between the hidden layer and output layer are linear. 
Compared with backpropagation networks, the learning 
speed is faster since the unknown weights can be 
calculated from solving a linear equation. 

The RBF method was originally used for solving 
interpolation problems [18]. Given 𝑁  inputs {𝑥𝑖 ∈

𝑅𝑛| 𝑖 = 1, … , 𝑁}  and 𝑁 targets {yi ∈ Rn| i = 1, … , N} , a 
function  𝐹 is seeking to satisfy the interpolation 
conditions: 

 𝐹(𝑥𝑖) = 𝑦𝑖  𝑖 = 1, … , 𝑁                             (4)  

and the problem can be solved by the RBF expansion: 

𝐹(𝑥) = ∑ 𝛼𝑖ℎ(||𝑥 − 𝑥𝑖||)
𝑁

𝑖=1
                        (5) 

where 𝛼𝑖  is an unknown coefficient, 𝑥 represents the 
input vectors and 𝑥𝑖 is the RBF centre. Define: 

𝐻 =  ℎ (||𝑥𝑗 − 𝑥𝑖||)       𝑗 = 1, … , 𝑁                 (6) 

Equation (3) is the response function of the 𝑖𝑡ℎ locally-
tuned unit. ℎ  is a positive definite function and 
normally chosen as the unit normalized Gaussian 
function. Substituting the interpolation condition (4) and 
the response function (6) to the RBF expansion (5), it 
becomes: 

𝑦𝑖 = ∑ 𝛼𝑖𝐻
𝑁

𝑖=1
     𝑖 = 1, … , 𝑁                        (7) 

According to equation (7), the calculation of coefficient 
αi  depends highly on the size of matrix H. The 
computational complexity grows approximately to the 
third power of the size of the matrix (𝑁3). When 𝑁 is 
large, there will be a higher probability of ill-conditioning 
to the equation. Therefore, a small number of neurons 
for transformation are desired. Equation (5) becomes: 

𝐹(𝑥) = ∑ 𝛼𝑗ℎ (||𝑥 − 𝑥𝑗||)
𝐾

𝑗=1
                 (8) 

The value of 𝐾  is smaller than 𝑁  and the system 
becomes overconstrained. By least-squares approach, 
coefficients can be solved by: 

𝛼 = 𝐻+𝑦                                       (9) 

where 𝐻+ refers to the pseudoinverse of 𝐻  with a 
dimension of (𝐾 × 𝑁) [18]. 

4. RESULTS AND DISCUSSION 

4.1 Stage 1: K-means Clustering Results 

The K-means clustering results are shown in Fig. 5. 
Fig 5(a) shows one result of DBI calculation, the lowest 
value around 0.45 suggesting the optimal number of 
clusters is 4. The spread constant is then computed as 
9.455. Fig 5(b) is the colour code embedded in the SOM-
Toolbox. From the clustering results in Fig. 5(c) high 
dimensional data is represented in a 2-D grid and data 
with similar behaviour are formed as clusters. It can be 
seen that two colour regions on the top are fused 
together. Participants in each cluster are summarized in 
Table 2. The green region contains the most participants 
of state 0 and state 1, which are normal operational 
states. There is also a small amount of state 3 and state 
4. The blue and yellow regions consist of single 
participants, which are state 0 and state 3 respectively. 
The participants in the dark blue region are state 1, state 
3 and state 4. The reason for the existence of multi-states 
within one cluster is inferred as the fusion process or 
false alarms. Since SOM needs a sufficient amount of 
data to create meaningful clusters. Lack of data leads to 
an increase of randomness in the grouping process. 
Further clusters analysis is required in the future.   
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Fig 5 K-means Clustering (a) Davies-Bouldin Index. (b) Built-in 

olour code in the SOM-Toolbox (c) Partition  

 
Colour Code Composition 

Green State 0, State 1, state 3, state 4 

Blue State 0 

Dark blue State 1, State 3, State 4 

Yellow State 3 

Table 2 Participants in Each Cluster 
 

4.2 Stage 2: RBFNN Results 

   Fig 6 illustrates one of the testing results from the 
RBFNN. The red line represents the actual pitch state and 
the blue line is the testing result from the neural 
network. The result is relatively good, with most of the 
faults being predicted. Although some states are not 
correctly predicted, such as between sampling points 30 
and 40. With simple rounding and filtering techniques, 
values are made integer and negative and extreme 
values can be filtered. 
 

 
 

Fig 6 RBFNN Testing Result for One Simulation 
 

 
Fig 7 Frequency Chart Example 

 

 
Fig 8 Prediction Accuracy of Each Pitch State 

 
Fig 7 shows the frequency chart for one experiment. 

The x-axis labels are the predicted results from the 
RBFNN, and the colour bars represents real values in the 
dataset. Most values of state 0, state 1 and state 3 have 
been accurately classified. While poor performance for 
state 4 due to lack of training samples, so that the neural 
network could not learn their behaviours for prediction. 
The presence of state 2 in the predicted result was due 
to rounding process, so its performance will not be 
considered. By mapping the predicted results to the 
original dataset, the prediction accuracy is calculated. In 
Fig 8, the accuracy of identifying failures (state 3) has 
achieved to 96% - 99%. The performance for identifying 
states 0 and 1 is also high.  

In general, the main advantage of our approach is 
that it requires less prior knowledge of WTs. The system 
design is also simplified by using a shallow neural 
network such as RBFNN, which is also tolerant to input 
noise. However, the weakness of this approach is the lack 
of analysing WT dynamic behaviours provided by the 
higher frequency SCADA data.  

5. CONCLUSIONS  
Due to the high failure rate and subsequent 

downtime, accurate failure prognostic techniques are 
desirable for the WT pitch system. Analysing WT SCADA 
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data for WT failure prediction represents a cost effective 
method, requiring no additional sensors. A data sampling 
frequency of 1 Hz was utilized in our study. In order to 
alleviate the computation burden of the larger dataset, a 
compressed method combining SOM and RBFNN was 
proposed in this paper. From the experimental results 
using SCADA data from the Levenmouth WT, an accuracy 
of identifying pitch faults of 96% - 99% has been 
achieved. Future work will be focus on classification 
methods of the causes for alarms and multi-states in the 
clusters. 
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