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ABSTRACT 
H2 production through water electrolysis for power-to-X 
applications is being investigated by comparing different 
bidding strategies on the electricity spot market in 
Sweden. For that, a price independent order (PIO) 
strategy was developed assisted by forecasting 
electricity prices with neural networks (NN). For 
comparison, a price dependent order (PDO) with a fixed 
bid price was used. The optimization of the NN showed 
that increasing the number of neurons in the hidden 
layer did not reduce error in forecasting due to possible 
overlapping of data making the model unnecessarily 
complex. By using different combinations of data for in-
sample training and data from 2016-2018 for out-of-
sample testing, preliminary results showed similar trends 
for PIO and PDO when bid prices are increased. However, 
the PIO marginally reduced the average cost of electricity 
when compared to PDO in all scenarios, but this was at 
the expense of increased non-operating hours (cold and 
warm mode). Further investigations with a mathematical 
optimization approach will reveal ideal conditions to run 
the system with low H2 production costs and increased 
profitability. 
 
Keywords: Variable renewable energy, Nord Pool, day-
ahead market, water electrolysis, hydrogen production, 
process optimization.  

1. INTRODUCTION 
The concept of using excess electricity from variable 

renewable energy (VRE) sources to produce H2 through 
water electrolysis has gained attention in the recent 

years [1]. H2 as an energy carrier can be used in a variety 
of processes to produce gaseous (e.g. CH4 and NH3) and 
liquid fuels (e.g. methanol, gasoline and dimethyl ether), 
heat or even directly used as fuel for mobility [2,3]. Such 
energy concepts, frequently referred to power-to-X (PtX 
or P2X), proposes to assist grid balancing, reduce VRE 
curtailment, offer large-scale energy storage (e.g. H2 and 
CH4 in natural gas grid), couple different energy sectors 
and produce recycled carbon fuels through carbon 

capture and utilization (CCU), e.g. 4H2 + CO2 → CH4 + 
2H2O; ∆H = -164 kJ [3]. 

Different studies on H2 production through water 
electrolysis have shown that electricity purchase is the 
main cost driver [4,5]. Additionally, McDonagh et al. [3,6] 
demonstrated that for power-to-methane (PtCH4) 
production, when H2 and CO2 are converted to CH4 in a 
catalytic process, just having low-cost electricity (i.e. less 
than 10 €/MWh) is not sufficient for reducing production 
costs, but instead a minimum number of run hours is 
necessary to offset the investments of a project.  

Furthermore, with increasing shares of VRE in the 
energy mix, electricity markets and prices become less 
predictable. In particular, sudden and unexpected price 
peaks or seasonality of prices at daily, weekly and yearly 
level have been observed [7]. Under this scenario, 
different operational strategies for water electrolyzers 
operation might have a direct influence on the 
profitability of PtX processes. 

Knowing the electricity prices in advance could be 
useful for developing an operational strategy to control 
costs, run hours of the system, penalties for start-up 
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from cold mode as well as providing H2 according to the 
specific requirements of each PtX concept. Thus, 
depending on how electricity is purchased for PtX 
applications, it may result in different average prices, 
total number of run hours and consecutive hours of 
operation. The latter is particularly important when 
alkaline electrolysis (AEL) is used due to its longer time 
for start-up (cold: 1-2 h and warm: 5-10 min) in 
comparison to proton exchange membrane electrolysis 
(PEMEL) (cold: 5-10 min and warm: < 10 s) [8].  

To the best of the authors’ knowledge, the operation 
of electrolyzers assisted by electricity price forecasting 
has never been previously investigated in details. In 
addition, Frank et al. (2018) have introduced the concept 
of annual performance by assessing the energy 
consumption of electrolyzers during standby and start-
up time, however such dynamics have not been reported 
with real electricity market data yet. Lastly, the present 
research adds to the existing literature by comparatively 
assessing the operational and economic performance of 
different water electrolysis technologies over time up to 
2040. 

Therefore, the present study proposes to investigate 
different bidding strategies for electricity purchase in the 
Nord Pool day-ahead spot market. For that, price 
forecasting based on a neural network (NN) model is 
used to assist electricity purchase and control non-
operating hours (NOH) under cold and warm mode, as 
well as energy penalties for bringing the system into 
service. Different water electrolysis technologies, 
namely AEL and PEMEL, will be compared in the final 
assessment. Also, a mathematical optimization is 
foreseen to find the lowest possible levelised cost of H2 
(LCOH2) as well as a sensitivity analysis on key aspects of 
the process, including technological developments in the 
next years (CAPEX, OPEX and efficiency), time for cold 
start-up in AEL and different H2 storage sizes will be 
performed. Thus, allowing the assessment to cover 
future developments in water electrolysis and possible 
uses of H2 in further processes (e.g. PtCH4).          

2. METHOLOGY  

2.1 PtX model 

The PtX model refers to a H2 production facility in 
which H2 could be potentially delivered for any further 
application. Electricity is obtained from the spot market 
of the Nord Pool power exchange in a day-ahead trading 
scheme (more information is given in sections 2.2 and 
2.3). Different supplies such as deionized water and 
potassium hydroxide (KOH) as alkaline reagent for 

electrolyte use are considered according to the 
respective water electrolysis technologies assessed. To 
allow storage at 500 bar, H2 is compressed as soon as it 
is produced in the stacks. Based on the variety of possible 
H2 uses and their respective delivery requirements 
(constant or intermittent), different H2 storage capacities 
of 1, 3 and 7 days are being consider for an electrolyzer 
of 1074 kWel. The possibility of recovery low temperature 
waste heat (60 °C) from the electrolyzers is also 
considered [9]. In contrast, the possibility of selling O2 is 
excluded due to the possible saturation of the market in 
case of large-scale deployment of the technology [4].  

The model does not consider reductions in 
electrolyzers performance over time, however 
component replacement costs are included in economic 
assessment. Even though the present study is based on 
the most recent literature available, unavoidable 
uncertainty exists in the capital costs, in particular for the 
years 2030 and 2040 [10].     

To find the optimal process conditions that result in 
the least-cost operation mode in terms of LCOH2, a 
mathematical optimization procedure will be 
implemented in MATLAB (MathWorks, USA). This 
optimization procedure will take into consideration 
different parameters, such as price of electricity, run 
hours, electricity consumption during cold and warm 
modes as well as during ramp ups from cold to operation 
mode.  

2.2 Electricity market data 

Historical values of electricity prices in the day-ahead 
market of the Nord Pool power exchange during 2013-
2018 were used. The region SE4 (Sweden) was chosen 
since it offers more appropriate conditions for 
deployment of electrolyzers based on its energy matrix 
profile (highest share of VRE in the country). 

An analysis of variance (one-way ANOVA) followed 
by Tukey pairwise comparison was performed on the 
hourly electricity prices to verify whether statistical 
differences could be observed among years with 99% 
confidence level. The analysis was run with the software 
Minitab 18 (Minitab, USA).      

2.3 Bidding strategies 

Two different bidding strategies were developed for 
comparison, namely price dependent order (PDO) and 
price independent order (PIO). For PDO strategy, bidding 
price is fixed during the whole assessment period. The 
electrolyzer is put in operation mode every time the 
electricity price is less than or equal to the pre-defined 
bidding price. In case of the electricity price being higher 
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than the bidding price the number of NOH is recorded 
and used to decide whether the electrolyzer is put on 
warm or cold mode (NOH ≥ 8 h = cold mode). In contrast, 
the PIO strategy purchases predetermined volumes of 
electricity in each hour of the day. To assist this decision, 
prices of electricity are modeled and stepwise forecasted 
in a day-ahead scheme (more information is given in 
section 2.4). Once prices are forecasted, the average 
value for the next 24 h is calculated and used as 
reference for the decision whether the electrolyzer is put 
in operation, warm, or cold mode. Considering seasonal 
variations in load of electricity which could potentially 
influence prices in the spot market, different capacity 
factors are chosen for winter (50%), spring (75%), 
summer (100%) and fall (75%) to help decide if the 
system should operate. This approach is intended to 
avoid electricity consumption when prices are 
excessively expensive. 

2.4 Modelling with neural networks (NN) 

A NN model was set-up to forecast short term 
electricity prices in a day-ahead market according a 
MATLAB toolbox (MathWorks, USA). Historical values of 
system load (SYSLoad), electricity price (ElecPrice) and 
hydropower reservoir (HPReservoir) were obtained from 
Nord Pool for SE4 region and used as input data. In 
addition, dry bulb temperature (DryBulb) and dew point 
DewPnt) obtained from the meteorological station 
Hörby A (55°N 13°E, 114 m altitude) were also used as 
input data, as well national holidays. These input values 
(including hour of the day and day of the week) were 
used by the NN to calculate additional predictors such as, 
working day, SYSLoad at the same hour in previous week, 
SYSLoad at the same hour in the previous day, average 
SYSLoad in the previous 24 hours, ElecPrice at the same 
hour in the previous week, ElecPrice at the same hour in 
the previous day, average ElecPrice in the previous 24 
hours, HPReservoir in the previous 24 hours and average 
HPReservoir in the last week. 

Differences between ElecPrice and forecasted 
electricity price were assessed by mean absolute percent 
error (MAPE) according to Eq. 1. 
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Where: 
 
At is the ElecPrice (€/MWh) 
 

Ft is the forecasted electricity price (€/MWh) 
 

The number of years used for in-sample data training    
and out-of-sample testing the NN was varied as well as 
the number of neurons in the hidden layer (from 10 to 
100) in order to find a reduced MAPE value. 

3. RESULTS 

3.1 Data set characterization  

The data set presented significant differences (p < 
0.01) in terms of electricity prices, except when 2014 and 
2017 are compared (p > 0.01) (Fig 1). In 2015 and 2016, 
the majority of the hourly prices were found to be below 
30 €/MWh, resulting in the lowest prices in the data set 
with average values of 22.90 €/MWh and 29.53 €/MWh, 
respectively. In contrast, 2013 and 2018 presented the 
highest prices in the data set with average values of 
39.93 €/MWh and 46.36 €/MWh, respectively. In 
particular, during 2018 unfavorable weather conditions 
like drought might have influenced the highly 
hydropower dependent Swedish electricity market since 
68% of the hourly price distribution in that year was 
found to be higher than 40.00 €/MWh. 

 In the meantime, the range of prices (difference 
between minimum and maximum values), was more 
pronounced in 2016 (210.23 €/MWh) and 2018 (253.43 
€/MWh) in comparison to the other years (average of 
123.27 €/MWh). This demonstrates that even low price 
years like 2016 are subjected to at least short-term high 
variations in electricity prices, suggesting that a forecast 
of such events could be beneficial to manage the 
operation of electro-intensive processes. 
 

 
 

Figure 1 – Box plot of electricity prices from data set. 

3.2 Adjustment of the neural network (NN) 

To improve the electricity price forecasting, the 
number of years used for training and the number of 
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neurons in the hidden layer of the NN were varied to try 
and minimize MAPE (Table 1). In general, by increasing 
the number of neurons from 10 to 100 the MAPE 
increased reducing the accuracy of the forecasting. This 
is explained by a possible overlapping of data making the 
model unnecessarily complex and less precise in 
forecasting day-ahead electricity prices.  

It was also observed that a certain number of years 
are necessary for training the NN to reduce error in 
forecasting the test set. Such period varied according to 
each forecasted year. For 2016, training the NN with 2 
previous years showed satisfactory results (MAPE of 
9.26%) while increasing the train set to 3 years showed a 
minor improvement (MAPE of 9.03%). For 2017, similar 
conditions were found, however in this case at least data 
from the 3 previous years was needed for a MAPE of 
10.64% while a minimal improvement was obtained by 
increasing the train set to 4 years (MAPE of 10.26%). 

 
Table 1 – Mean absolute percent error (MAPE) for 
different composition of train and test sets as well as 
number of neurons in the neural network (NN). 

Train set Test set 
Number of neurons 

10 20 50 100 

2015 

2016 

12.15 17.88 22.79 29.39 

2014-2015 9.26 11.54 11.06 14.79 

2013-2015 9.03 9.68 9.75 13.35 

2016 

2017 

13.10 18.00 35.52 42.01 

2015-2016 12.32 12.78 13.86 14.68 

2014-2016 10.64 10.99 11.87 12.67 

2013-2016 10.26 10.86 10.99 11.57 

2017 

2018 

17.69 20.62 23.29 33.27 

2016-2017 18.37 18.16 22.98 24.09 

2015-2017 15.15 20.25 18.25 20.82 

2014-2017 16.47 20.38 21.44 25.73 

2013-2017 15.27 14.68 16.68 17.54 

 
Even though the same trend of reducing the MAPE 

with higher number of years in the train set was also 
found for 2018, the lowest MAPE observed for this year 
was much higher than in the other tested years (14.68% 
with 20 neurons in the hidden layer). In this case, the 
different characteristics among years found in the data 
set might have limited the accuracy of the NN. In 
particular, the unusual high average and range prices 
observed in 2018 are the main reason for such higher 
error in the forecast. Nevertheless, in an extensive 
assessment of 27 different forecasting methods, Lago et 
al. (2018) found a MAPE of 12.3% for the best approach. 
Thus, reinforcing the robustness of the current method 
since the average MAPE for the whole test set was 
10.99%. 

Based on this assessment, combinations of years in 
the train set and number of neurons that resulted in the 
lower MAPE were further used. For this reason, 
simulations were carried-out by always using all available 
data (prior the year of testing) for in-sample training the 
NN. Furthermore, the value of 10 neurons in the hidden 
layer was used when testing for 2016 and 2017 while in 
2018 the value of 20 neurons were chosen.   

3.3 Preliminary results of plant operation   

The preliminary results of simulation an AEL plant 
operation are shown in Fig 2. Regardless the year 
observed, by increasing bid price from 20-50 €/MWh 
similar trends for PIO and PDO were found. For both 
bidding strategies NOH are strongly reduced with higher 
bid prices suggesting an improvement on plant operation 
since the electrolyzer would idle under cold or warm 
mode less. Also, when no H2 production is required or it 
is prohibitive due to excessive electricity prices in spot 
market, electricity is purchased from regulated market to 
keep the system awake during these NOH. Thus, 
reducing NOH would increase H2 output and reduce the 
consumption of high tariff electricity from the regulated 
market. 

 

 
Figure 2 – Results of simulation an AEL plant in 2016-
2018. (a) Price independent order (PIO) and (b) Price 
dependent order (PDO).  
Note: Non-operating hours (NOH); lines are price 
paid (left y axis); and dots are NOH (right y axis). 
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By increasing the bid price the average price paid for 

the electricity in the spot market also increases. In 
particular, in 2018 by varying bid price from 20-50 
€/MWh the price paid increased 2.6 fold for PIO and 2.8 
fold for PDO. When different bidding strategies are 
analyzed, PIO reduced the price paid for electricity in up 
to 5% in comparison to PDO. However, it has generated 
higher NOH than PDO, especially warm standby hours. 
This behavior is explained by the different capacity 
factors used depending on each season of the year which 
has reduced price paid but increased NOH of PIO 
strategy. 

In addition, considering that there would also be a 
penalty for bringing the system into service from standby 
mode, it can be expected that during PEMEL operation 
the price paid for the electricity would have a higher 
relevance since PEMEL has a much faster start-up time 
than the simulated AEL technology. Further 
investigations will focus on the mathematical 
optimization to minimize the LCOH2 as well as the 
comparison of different water electrolysis technologies 
reflecting the present and future development of H2 
production for PtX applications.  

4. CONCLUSION 
 
Major differences in terms of range and average 

electricity prices were found among 2013-2018 for SE4 
region in Sweden. Such characteristics have directly 
influenced the ability of the neural network in 
forecasting day-ahead electricity prices, especially for 
the year 2018 in which a severe drought was observed. 
Bidding strategy based on electricity price forecasting 
showed a reduced price paid in comparison to price 
dependent order, however it has increased the idleness 
of the system (higher non-operating hours).  

REFERENCES 
 

[1] Robinius M, Raje T, Nykamp S, Rott T, Müller M, 
Grube T, et al. Power-to-Gas: Electrolyzers as an 
alternative to network expansion – An example 
from a distribution system operator. Appl Energy 
2018;210:182–97. 
doi:10.1016/j.apenergy.2017.10.117. 

[2] Blanco H, Nijs W, Ruf J, Faaij A. Potential for 
hydrogen and Power-to-Liquid in a low-carbon EU 
energy system using cost optimization. Appl 
Energy 2018;232:617–39. 
doi:10.1016/j.apenergy.2018.09.216. 

[3] McDonagh S, O’Shea R, Wall DM, Deane JP, 
Murphy JD. Modelling of a power-to-gas system 
to predict the levelised cost of energy of an 
advanced renewable gaseous transport fuel. Appl 
Energy 2018;215:444–56. 
doi:10.1016/j.apenergy.2018.02.019. 

[4] Kuckshinrichs W, Ketelaer T, Koj JC. Economic 
Analysis of Improved Alkaline Water Electrolysis. 
Front Energy Res 2017;5. 
doi:10.3389/fenrg.2017.00001. 

[5] Grüger F, Hoch O, Hartmann J, Robinius M, 
Stolten D. Optimized electrolyzer operation: 
Employing forecasts of wind energy availability, 
hydrogen demand, and electricity prices. Int J 
Hydrogen Energy 2019;44:4387–97. 
doi:10.1016/j.ijhydene.2018.07.165. 

[6] McDonagh S, Wall DM, Deane P, Murphy JD. The 
effect of electricity markets, and renewable 
electricity penetration, on the levelised cost of 
energy of an advanced electro-fuel system 
incorporating carbon capture and utilisation. 
Renew Energy 2019;131:364–71. 
doi:10.1016/j.renene.2018.07.058. 

[7] Lago J, De Ridder F, Vrancx P, De Schutter B. 
Forecasting day-ahead electricity prices in 
Europe: The importance of considering market 
integration. Appl Energy 2018;211:890–903. 
doi:10.1016/j.apenergy.2017.11.098. 

[8] Buttler A, Spliethoff H. Current status of water 
electrolysis for energy storage, grid balancing and 
sector coupling via power-to-gas and power-to-
liquids: A review. Renew Sustain Energy Rev 
2018;82:2440–54. 
doi:10.1016/j.rser.2017.09.003. 

[9] Frank E, Gorre J, Ruoss F, Friedl MJ. Calculation 
and analysis of efficiencies and annual 
performances of Power-to-Gas systems. Appl 
Energy 2018;218:217–31. 
doi:10.1016/j.apenergy.2018.02.105. 

[10] Schmidt O, Gambhir A, Staffell I, Hawkes A, 
Nelson J, Few S. Future cost and performance of 
water electrolysis: An expert elicitation study. Int 
J Hydrogen Energy 2017;42:30470–92. 
doi:10.1016/j.ijhydene.2017.10.045. 

[11] Lago J, De Ridder F, De Schutter B. Forecasting 
spot electricity prices: Deep learning approaches 
and empirical comparison of traditional 
algorithms. Appl Energy 2018;221:386–405. 
doi:10.1016/j.apenergy.2018.02.069. 

 
 


