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ABSTRACT 
 The relationship between air temperature and 

energy consumption at the city level has been 
investigated to better understand the impact of the 
climate change on energy demands. Temperature rising 
caused by the climate change has been shown to lead to 
the increase of building energy demands. Buildings also 
contribute to climate change by radiating heat from 
building surfaces. In this respect, this study aims to 
evaluate the potential impact of building rooftop and 
façade surface temperatures on household energy 
consumption. We developed a method that combines 
multiple scale observations, including an Internet of 
things (IoT) sensor network and remote sensing, to 
estimate the relationship between surface temperatures 
and energy consumption. The results will contribute to 
managing building energy uses based on the better 
understanding of micro-scale temperature effects in 
urban area. 
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1. INTRODUCTION 
Effective action plans should be developed to 

manage energy consumption and demands in residential 
sectors [1]. It is important to understand both energy 
consumption usage patterns and temperatures, as 
residents sometimes control household temperatures 
with air conditioners, further increasing energy costs [2]. 
Given the need for sustainable urban environmental 
systems design, and the negative effects of high local 

temperatures on human health and wellbeing, it is also 
considered necessary to evaluate urban microclimates 
[3]. 

As reviewed by Belussi et al. [4], many studies have 
looked at the relationship between air temperature and 
energy consumption at the city level, and how increasing 
energy demands may impact climate change [5–7]. For 
example, Fung et al. [8] found that rising air temperature 
had a significant impact on the energy sector in Hong 
Kong. Among many reasons increasing air temperatures, 
building surface temperatures influence air temperature 
changes and building energy demands [9]. Surface 
temperature influences on the urban heat-island impacts 
directly by radiating heat, and this micro-climate changes 
affect building energy demands [10]. Moreover, building 
surface temperatures influence the indoor building 
energy use through heat conduction. When surface 
temperature high, buildings require low energy during 
heating period, but they require high energy during the 
cooling seasons [11].  

Building surface temperature also influence mean 
radiant temperature and this contributes to pedestrian 
thermal comfort [12]. Evaluating both air temperatures 
and building surface temperatures will contribute to 
better understanding of the more detailed micro-scale 
relationships as well as including a human-experiential 
perspective. Due to the growing distribution of the 
Internet of things (IoT) sensor networks, micro-scale data 
has enabled us to observe multi-scale temperatures 
[13,14]. Furthermore, we can also easily obtain surface 
temperature data from multiple scale remote sensing 
systems [15].  
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In this study, as a first step in the evaluation of micro-
scale temperature-energy relationships, we installed IoT 
network sensors on households and combined the 
collected data with that obtained from multiple surface 
monitoring systems. The study took place in the Kyojima 
district, Sumida ward, Tokyo, Japan. The target data is 
from August 28, 2017, which was a sunny day with 
minimum and maximum air temperatures of 22.3 and 
31.4 degrees, respectively.  

2. SURFACE TEMPERATURE MONITORING  

2.1 Review of heatwave-related monitoring in Japan 

In Japan, climate conditions are monitored in 
multiple ways. For example, Japan’s Metrological Agency 
monitors temperature, humidity, and other atmospheric 
variables in about 1,300 stations using AMeDAS 
(Automated Meteorological Data Acquisition System).  

Weather has often been monitored using a bottom-
up approach. For example, Weather News Inc. collects 
weather information from 2.5 million voluntary weather 
reporters. Indoor and outdoor weather information 
collected by IoT devices in and/or around houses is 
uploaded using a portal site (i.e. NETATMO Inc.). Use of 
Volunteered Geographic Information (VGI) is now 
spreading widely all over the world [16]. Remote sensors 
such as MODIS (resolution: 500 m), ASTER (resolution: 
resolution: 90 m), and LANDSAT 8 (resolution: 30 m) have 
also been used to monitor surface temperatures with a 
relatively high-spatial resolution. 

Despite increases in heat-related monitoring 
systems, they are not yet sufficient for monitoring 
heatwave events in district levels, as the capability to 
measure these events depends on the location of micro-
scale urban structures such as buildings and trees. 
Therefore, this study attempted to estimate micro-scale 
heat conditions by combining airborne and tower 
monitoring techniques, as explained below. 

2.2 Tower monitoring 

We used tower monitoring data in collaboration 
with the Japan Weather Association to monitor temporal 
surface temperature changes. An InfReC R500EX 
thermos camera provided by Nippon Avionics Co. Ltd. 
was installed at an altitude of 480m on the Tokyo 
SkyTree. Ground temperatures were monitored over 5 
minute intervals on the East side of the SkyTree. 

As shown in Fig. 1 (a), each plot recorded the 
temperature at 11:00, 13:00, and 15:00. This figure 
confirmed that the monitored images captured rapid 
temperature increase at around the noon. While data 

was recorded in 5 minute intervals, we used images from 
2 hour intervals (1:00, 3:00, …, 23:00). 

 

2.3 Airborne monitoring 

To monitor micro-scale heatwaves, we used an 
airborne monitoring technique in collaboration with 
SkyMap Co. Ltd. The target monitoring time-period was 
between 11:01 and 11:43 on August 28, 2017. The flight 
path was a zig-zag pattern over the East side of the Tokyo 
SkyTree in the Sumida ward, in the north-east part of 
Tokyo, Japan. 
 

 
Fig. 1 Processing method used to monitor spatio-
temporal surface temperature changes using tower and 
airborne monitoring techniques. 
 
Monitored images were then combined using mosaic 
processing. 

In Fig. 1 (b), the resulting surface temperature map 
demonstrates that the monitoring technique 
successfully captured high temperatures on rooftops, 
low temperatures in rivers, and so on. Unfortunately, 
airborne monitoring is costly, so it is unrealistic to 
monitor temperatures over an entire day. The next 
section introduces another monitoring technique that is 
able to better measure the temporal behavior of surface 
temperatures. 

2.4 Processing of heat monitoring data 

Tower monitoring and airborne monitoring have 
different limitations. Using the former, monitoring 
images are inclined, whereas the latter is only available 
over a limited time-period, and is not necessarily 
straightforward for heatwave management applications. 
In addition, the former covers only a small portion of the 
airborne monitoring area. 
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Thus, we combined these two monitoring 
techniques to compensate for their respective 
shortcomings, and to quantify high-resolution, spatio-
temporal heat intensity. In regard to the tower 
monitoring images, (i) the image cells were clustered 
based on monitored temporal patterns. Based on the 
results road, rooftop, and façade temporal temperature 
variations were modeled. In the case of airborne 
monitoring images, (ii) spatial patterns of road and 
rooftop temperatures were modeled at 11:20, which was 
the time of the mean daytime temperatures. After that, 
(iii) surface temperature maps were created for 2 hour 
periods by combining the results from (i) and (ii) through 
histogram matching. 

 
2.4.1 Processing of the tower monitoring images  

The tower monitoring cell images were clustered 
based on temporal temperature variation. We applied k-
means clustering, which is a standard clustering 
algorithm. Based on a preliminary analysis, the number 
of clusters was fixed at four. We first tried to optimize 
the number of clusters by minimizing the Akaike 
Information Criterion, which is a well-known 
generalization error statistic, but the resulting number of 
clusters was too high, and the clusters were difficult to 
interpret. The final estimated clusters were fit to a photo, 
as shown in Fig. 1 (a). 

Monitored rooftop, road, and façade cluster 
temperatures were aggregated at each time point, and 
the median values and the 95 % confidential intervals 
were plotted in Fig. 1 (c). While the surface temperatures 
in each cluster were similar overnight, they had 
substantial differences in the daytime; rooftops were the 
hottest, roads were moderate, and façades were the 
coolest among the three. It was also shown that the 
surface temperature were more uncertain (i.e., wide 95 
percent intervals) during the day, compared to at night. 
These results are intuitively reasonable. One of our 
interesting findings was that the hottest time shifts 
depended on surface type: rooftop temperatures had a 
sharp peak at around 13:00, road temperatures had a 
relatively flat peek between 13:00 and 15:00, and façade 
temperatures had a peak at around 15:00. This result 
might be because rooftops receive the most solar 
radiation, and the heat saturates more quickly there than 
on roads and façades. The late façade peak might be 
because they usually receive stronger direct sunlight 
after the sun starts setting. 

The aforementioned results highlight the 
effectiveness of tower monitoring for capturing 

temporal patterns by surface structure type. It is 
important to note that the façade temperatures were 
never monitored using the common (orthogonal) remote 
sensing technique. Observed façade temperatures were 
more likely to explain the influence of outdoor heat on 
the indoor environment (through walls/window) than on 
road and rooftop temperatures. Tower monitoring is, 
therefore, an important tool for monitoring indoor heat 
stress. 

To combine the tower and airborne monitoring 
results, 1%, 2%, …, 100% temperature cluster quantiles 
were calculated.  

 
2.4.2 Processing of the airborne image  

The building polygons, which were provided by 
Zenrin Co. Ltd., were overlain on the airborne images, 
and 1%, 2%, …, 100% temperature quantiles for the 
rooftops were determined. Likewise, 1%, 2%, …, 100% 
road temperature quantiles are also calculated. As we 
did not have road surface data, we assumed that areas 
other than buildings, green areas, and rivers (source: 
National Land Numerical Information downloads service) 
were roads. 

2.5 Surface temperature mapping 

The temperature quantiles for rooftops and roads 
from the tower and airborne images were then 
combined by matching the quantiles. The procedure for 
calculating rooftop temperatures was as follows: (i) for 
the tower monitoring images, the quantile values at 
11:20 were estimated using temporally linear 
interpolation based on the tower monitoring images at 
11:00 and 13:00; (ii) for each quantile 𝜏𝜏, the change in 
temperature relative to 11:20, defined by 𝑐𝑐(𝑡𝑡, 𝜏𝜏) = [the 
𝜏𝜏 -th quantile temperature value at time  𝑡𝑡 ]/[the 𝜏𝜏 -th 
quantile temperature value at time 11:20], was 
evaluated over 2 hours using the tower monitoring 
images; (iii) for an airborne monitoring rooftop cell 
image, whose temperature is at the 𝜏𝜏-th quantile, the 
temperature at 𝑡𝑡-th time was estimated by multiplying 
the temperature monitored at 11:20 with 𝑐𝑐(𝑡𝑡, 𝜏𝜏); (iv) the 
same estimation was done for all the cells. The same 
calculation was done to estimate road temperature as 
well. Finally, the estimated rooftop and road 
temperatures were merged using mosaic processing. In 
short, surface temperatures were estimated so that 
temporal patterns in each quantile, which were 
monitored through tower monitoring, and spatial 
patterns in each quantile, which were monitored by 
airborne monitoring, were preserved. 
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The estimated surface temperatures increased 
rapidly between 11:00 and 13:00, and remained high 
until around 17:00, when they began to gradually 
decrease. We also found that road temperatures 
remained relatively high through the night, whereas 
rooftop temperatures were higher throughout the day. 

As previously mentioned, façade temperatures 
monitored using tower monitoring are potentially useful 
for estimating indoor heat stress. Therefore, we then 
estimated façade temperatures on each building. To 
achieve this, we estimated: [façade temperature at t-th 
time at g-th cell] = [rooftop temperature at t-th time at 
g-th cell] × [(façade temperature at t-th time at 𝜏𝜏(𝑔𝑔)-
th quantile)/(rooftop temperature at t-th time at 𝜏𝜏(𝑔𝑔)-
th quantile), where 𝜏𝜏(𝑔𝑔) represents the quantile of the 
monitored value at the g-th cell. The quantile was 
calculated using airborne cells on buildings. 

3. ENERGY CONSUMPTION MONITORING  
We used two types of sensors to collect data using 

IoT technology; one is a networked sensor that sends 
collected data in nearly real-time, and the other is non-
networked sensor with an SD storage card inside, where 
someone manually collects the data from the storage 
card. IoT data collection from the different types of 
devices can avoid security issues in the future [17]. We 
set all the sensors to record over the same time-period 
(August 28, 2017) that was used for heat monitoring 
(mentioned in Section 2). 

We installed the sensors on seven households in 
Kyojima: five in newly built apartment buildings and two 
in wooden houses. 

To measure electricity consumption, networked 
sensors were installed to each household’s switchboard 
with clamps. We also used smart meters made by Sassor 
Inc., which recorded data in 1-minute intervals. The data 
was then sent to a central database via a Wi-Fi network. 

4. RESULT AND DISCUSSION 
Fig. 2 shows temporal variation between energy 

consumption (collected using IoT sensor network) and 
rooftop and façade surface temperatures (collected 
using tower and airborne monitoring), on August 28, 
2017. The wooden house had both higher surface 
temperatures and lower energy consumption rates than 
the apartment. Therefore, although we first applied a 
vector autoregression (VAR) model to estimate energy 
consumption, based on the regressions of the two 
surface temperatures, the change-ratio, and the 1st and 
2nd lags, the results from the apartment and wooden 
house were not statistically significant. However, only 

the 2nd lag in the rooftop temperatures recorded from 
the wooden house was significant at a 5% level. These 
results suggest that in order to better support urban 
energy demand management for the residential sector, 
surface temperatures monitored two hours prior should 
help predict energy consumption. Refinement of this 
estimation method should be researched further in the 
future. 
 

 
Fig. 2 Temporal variation of energy consumption [Wh] 
collected by an IoT sensor network and rooftop and 
façade surface temperatures [degree] collected via 
tower and airborne monitoring, on August 28, 2017. 
(solid line: mean; dotted lines: lower and upper bound of 
standard deviation) 
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