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ABSTRACT 

Accurate capacity estimation is of vital importance 
for lithium-ion battery management. In this paper, an 
adaptive battery capacity estimation method based on 
incremental capacity analysis (ICA) is proposed. First of 
all, the second-order central least squares method is 
employed to smooth the charging data and obtain the 
incremental capacity (IC) curve. Then some battery 
experiments, including the complete charging and partial 
charging, are designed and conducted. For the complete 
charging, the relationship between the features of IC 
curves and battery capacity fading is investigated. For 
the limitation of ICA on partial charging, the correction 
method considering the charging initial SOC and battery 
aging status is proposed. Finally, the algorithm 
framework of the adaptive capacity estimation based on 
ICA is put forward.  
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NOMENCLATURE 

Abbreviations  

BMS Battery management system 
SOC State of charge 
ICA Incremental capacity analysis 
CLS Central least squares 

Symbols  

Q Battery charging capacity 
V Battery terminal voltage 
H The height of the peaks or valleys 

1. INTRODUCTION 
Under the trend of development for new energy 

vehicle, the lithium-ion battery has been deemed as the 
research focus due to its superior performance [1]. 
Meanwhile, battery management is considered as the 
key technology to realize the high efficient utilization of 
battery. The accurate acquisition of battery internal 
parameters and states is the core function of the battery 
management system (BMS). As a parameter to 
characterize the battery performance, battery capacity is 
the preliminary information to estimate the battery state 
of charge (SOC), battery state of health, and so on, 
indicating that it is necessary and essential to estimate 
the battery capacity online. However, the battery 
capacity decays nonlinearly during vehical application, 
which will challenge the battery management and 
estimation method.  

Efforts of many researchers have been done to 
investigate an accurate and adaptive capacity estimation 
algorithm [2]. Many studies prefer to estimate the 
capacity based on battery SOC due to their close 
relationship. Wei et al. [3] constructed a second-order 
estimator to realize the union estimation of battery SOC 
and capacity with the help of extended Kalman filter for 
vanadium redox flow battery. To account for the 
nondeterminacy in both battery model and 
measurement, the total least squares algorithm was 
employed in capacity estimation [4]. Besides the above 
kind of capacity estimation method, some intelligent 
data-driven algorithms have also attracted researchers’ 
attention [5]. The shortcoming is that a great deal of 
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battery experimental data is the fundamental of the 
data-driven method. 

The incremental capacity analysis (ICA) is a capacity 
estimation method related to battery aging mechanism. 
From the analysis of the half-cell voltages curves 
presented in ref [6], the voltage curves of cathode and 
anode demonstrate different flat regions caused by the 
two-phase transition phenomena, and the flat regions in 
half-cell voltages will eventually contribute to the 
plateaus in the full battery voltage curve. Despite the 
plateau information of full battery voltage curve can be 
employed to estimate battery capacity, it is not easy to 
capture the curve difference caused by capacity 
attenuation [7]. The ICA method is a more intuitive way 
to estimate the capacity loss, through calculating the 
derivatives of the charged/discharged capacity with 
respect to battery voltage. The foundation of the ICA 
method is to find the incremental capacity (IC) features 
which have a strong relationship with battery capacity 
fading [8]. However, the battery voltage-charging 
capacity curve will be influenced by measurement noise. 
Therefore, the proper data processing method shall be 
adopted to denoise the data to obtain a smooth IC curve. 
Feng et al. [9] proposed a smoothing method based on 
support vector regression, and improvements in terms of 
algorithm speed, adaptability, and estimation accuracy 
have been made. The Gaussian filter also has superiority 
in smoothing charging data and was employed in ref [10]. 
After obtaining the IC curves under different battery 
aging statuses, the position of IC peaks was adopted to 
estimate battery capacity. To enhance the adaptability of 
ICA method in the battery module, Weng et al. [11] 
extended the ICA based capacity estimation method 
from a single cell to battery module which has parallel-
connected cells with various aging statuses. The previous 
researches on the ICA method to estimate battery 
capacity have achieved great progress. However, an 
essential limitation among the current ICA researches is 
that the battery must be charged from the 0% SOC, and 
in vehical application, it is rare to discharge the batteries 
fully. Since that the battery charging current during 
vehical application is relatively large (standard charging 
current is 0.5C), the battery polarization process leads to 
a great voltage difference between the battery open 
circuit voltage and terminal voltage, and the difference is 
related to charging initial SOC. The battery polarization 
process challenges the adaptability of traditional ICA 
method. Therefore, it is necessary to investigate the 
effectiveness of the ICA method during battery partial 
charging.  

In this study, the IC curves will be first smoothed 
through the central least squares (CLS), and then the 
relationship between the features of IC curves and 
battery capacity fading will be obtained. Some 
experiments that battery charges with different initial 
SOC will be conducted to study the influence of partial 
charging on ICA. Finally, an adaptive capacity method 
based on the ICA method will be proposed for lithium-
ion battery.  

2. THE ICA AND DATA SMOOTHING METHOD 
The constant current-constant voltage charging 

pattern is commonly used in electric vehicles. The 
battery will be first charged with a constant current 
pattern, and then transfers to a constant voltage pattern 
when the battery voltage reaches the charge cut-off 
voltage. Fig 1 (a) shows the curves of charging capacity 
with respect to battery voltage under different aging 
statuses during constant current (0.5C) profile. It is 
evident that the charging curves have a downward trend 
with attenuation of battery capacity because the amount 
of electricity that can be charged into the battery 
decreases. Besides, in region A and B, for a battery with 
a specific capacity, it can be found that the slope of the 
charging curve has changed because of the two-phase 
transition process. An inapparent phenomenon is that 
batteries with different capacity have different slope 
change. However, it is difficult to capture the difference.  

 
Fig 1 (a) Battery voltage-charging capacity curves under 

different aging statuses; (b) The diagram of IC curve 

The principle ICA method is to obtain the charging 
capacity during tiny voltage range, or in other words, 
calculating the differential of the charging capacity to 
battery voltage. Therefore, the voltage plateaus of 
charging curve in Fig 1 (a) will be converted to peaks of 
IC curve in Fig 1 (b). Fig 1 (b) demonstrates two peaks in 
region A and B, and the relationship between the IC 
features and capacity decreasing needs to be further 
investigated.  

The calculating of the IC curve can adopt the 
following equation: 
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where Qk and Vk represent the battery charging capacity 
and voltage at sample time k separately. The problem is 
that if the time interval between k1 and k2 is small, the IC 
curve will be noisy, and if the time interval is large, the IC 
curve features will become indistinct. Thus, a more 
adaptive data smoothing method shall be adopted.  

In this study, we will employ the CLS [12] to smooth 
the battery charging data and obtain the IC curve. Fig 2 
shows the diagram of the CLS to smooth the data. 
Assume that there is a data sequence consisting of L+1 
points, from (xc-L/2, yc-L/2) to (xc+L/2, yc+L/2), and a second-
order polynomial function can be employed to fit the 
data sequence as: 

 2
0 1 2y a a x a x≈ + +   (2) 

where x and y are the measurement data, and a0~a2 are 
the polynomial coefficients. 

The solution of equation (2) can be obtained by 
defining a cost function / 2 2
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By solving the equation (3), the polynomial 
coefficients of the equation (2) will be obtained. If we 
adopt y as the battery charging capacity, and x is the 
battery voltage, the IC at the central point ( , )c cx y  can 
be obtained as: 

 1 22 c
dQ a a x
dV

≈ +   (4) 

It should be noticed that to ensure the smooth IC 
curve, the moving CLS shall be adopted from the charging 
beginning to the end.  

 
Fig 2 Diagram of the central least squares 

3. EXPERIMENT DESIGN 
To obtain the relationship between IC features and 

capacity attenuation, battery experiments shall be 
designed and conducted. A kind of NMC/Graphite 
cylindrical battery with the nominal capacity of 2.750Ah 
is used in this study. The battery charge and discharge 
cut-off voltage are 4.2V and 2.5V, respectively. The 
experiment setup includes a battery test system, an 
environmental chamber, and a computer. All the 
experiments are conducted at 25°C.  

A total of 6 batteries (#1~#6) are used for the ICA 
experiments, which is showed in Table 1, and to enhance 
the accuracy, there different aging status of battery 
#1~#6 are taken into account, including Test 1~Test 3. 
The accelerated aging is employed during different tests. 

Table 1 Batteries for the ICA experiments 
Battery No. Test 1 Test 2 Test 3 

#1 2.872Ah 2.872 Ah 2.871 Ah 
#2 - 2.670 Ah 2.589 Ah 
#3 2.598 Ah 2.517 Ah 2.363 Ah 
#4 2.332 Ah 2.280 Ah 2.183 Ah 
#5 2.735 Ah 2.659 Ah 2.578 Ah 
#6 2.870 Ah 2.724 Ah 2.555 Ah 

As mentioned above, the adaptive ICA method to 
estimate battery capacity, including complete charging 
and partial charging, is the purpose of this study. In the 
complete charging experiments, each battery (#1~#6) 
under different aging statuses will be charging from 0% 
to 100% SOC at two or three times with the 0.5C current, 
and the sampling frequency is 10Hz. In the partial 
charging experiments, the test flow is shown in Fig 3.  

 
Fig 3 The experiment flow for partial charging 
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In the partial charging experiment, battery #1~#4 in 
Test 2 and Test 3 will be charging from a setting initial 
SOC (10%, 20%, …90%) to 100% with the 0.5C current. 
After obtaining the charging data, all the IC curves will be 
analyzed for capacity estimation. 

4. RESULTS AND DISCUSSION  

4.1 The ICA method for complete charging 

Fig 4 shows the IC curves under different battery 
aging statuses. It is evident that the IC curves are smooth 
and without much noise, which can be used in the 
analysis of capacity estimation. From the IC curves of 
battery with a capacity of 2.871Ah (new battery) to that 
of battery with a capacity of 2.183Ah (aged battery), 
three peaks and three valleys of curves can be clearly 
seen, as shown in Fig 4. In fact, a tiny peak is on the right 
of Peak B, and it is ignored in this study.  

When the battery capacity decreases, it can found 
that Peak A, B, and C have a downward trend and move 
toward the right, so do the Valley A, B, and C. It means 
that the change of these IC features has a close 
relationship with battery capacity attenuation and can 
be employed to perform the estimation. In this study, we 
simply adopt the height of the IC peaks and valleys to 
describe the capacity decreasing.  

The relationship between battery capacity and the 
height of peak and valley is fitted by a one-order 

polynomial function, and the fitting results with the 
bigger coefficient of determination (R-square) are shown 
in Fig 5. Fig 5 shows fitting results of Peak B, Valley B, and 
Peak C, and it can be concluded that the correlation 
between these three features and battery capacity is 
strong (R-square≥0.9). Moreover, the correlation is 
adaptive to different batteries (#1~#6), which enhance 
the promise of ICA method to estimate the battery 
capacity. It can be confirmed that the position of Peak B, 
Valley B, and Peak C under different battery aging 
statuses are 3.675~3.715V, 3.865~3.920V, and 
3.975~4.015V, respectively. Therefore, the data 
smoothing and IC curve derivation can be performed in 
the above voltage range to reduce the computation load. 

 
Fig 4 IC curves under different battery aging statuses 

 
Fig 5 Fitting results of IC features with the battery capacity 

 
Hence, for the battery complete charging, the 

capacity estimation based on ICA method can be 
obtained as: 

 
1 Peak,B

2 Valley,B

3 Peak,C

Cap 0.289 1.205
Cap 1.291 0.691
Cap 0.977 0.142

H
H
H

 = × +


= × −
 = × −

  (5) 

where HPeak,B, HValley,B, HPeak,c are the height of Peak B, 
Valley B, and Peak C, respectively, and Cap1, Cap2, Cap3 
are the estimated capacity. 

The final estimated capacity can be average of the 
above Cap1, Cap2, Cap3, or the weighted average of them, 
where the weight coefficient is adjusted according to the 
quality of correlation. 

4.2 The ICA method for partial charging 

As discussed above, it is rare to charge the battery 
from 0%, and battery polarization process will influence 
the IC curves if the battery is charging from different 
initial SOCs.  
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Fig 6 shows the IC curves with different charging 
SOCinit (initial SOC) ranging from 0% to 100%. In Fig 6 (a), 
it can be found that even the new battery (#1), the IC 
curve will be distorted if the battery is not charging from 
0%. Due to initial charging voltage increasing, besides the 
complete charging IC curve, only the IC curve with the 
SOCinit = 10% has the feature of Peak A. For IC curves with 
the SOCinit from 10 to 40%, the feature of Peak B can be 
found. However, the difference between these 
deformed peaks is irregular. For IC curves the with the 
SOCinit from 10 to 60%, it can be found that the height of 
Peak C in different IC curves remains unchanged, which 
is promising to employed in capacity estimation. 

For the aging battery, as shown in Fig 6 (b), the same 
characteristic of Peak A and Peak B can be concluded. 
However, for the Peak C, peaks in different IC curves with 
different SOCinit have a downward trend. Hence, for # 3 
battery in Test 2, the correlation of the height the Peak C 
and SOCinit is shown in Fig 7. It can be confirmed that the 
height of Peak C has a strong relationship with the initial 
charging SOC. Because the IC curve with the SOCinit bigger 
than 60% is very deformed, so it is out of consideration. 
The slope (-0.0108) of the fitting result shown in Fig 7 is 
called SOC correction coefficient.  

 
Fig 6 IC curves with different charging initial SOC: (a) # 1 

battery in Test 2; (b) #3 battery in Test 2 

  
Fig 7 Fitting results of HPeak,c with battery SOCinit for #3 battery 

However, from Fig 7 (a) it can be confirmed that the 
initial charging SOC will not influence the height of Peak 
C, or in other words, the SOC correction coefficient is 

zero. It means that the SOC correction is related to the 
battery aging status. Fig 8 shows the SOC correction 
coefficient (slope of fitting results of HPeak,c with battery 
SOCinit) in the partial charging experiments, and it can be 
concluded that, with battery capacity decreasing, the 
SOC correction coefficient decreases (the absolute value 
increases). The relationship between SOC correction 
coefficient and battery capacity is also fitted by a one-
order polynomial function, and the result demonstrates 
a good fitting (R-square = 0.935). Therefore, the 
adjustment of the SOC correction coefficient according 
to battery capacity is called the aging correction. 
Considering that the battery capacity changes very little 
during two operation cycles, hence we can use the 
capacity estimated at the last operation cycle to perform 
the aging correction if the battery is partial charging.  

 
Fig 8 The relationship between SOC correction coefficient and 

battery capacity 

Based on the above analysis about ICA of battery 
complete charging and partial charging, the overall 
adaptive capacity estimation method is shown in Fig 9. 
The necessary battery data includes the charging current 
and terminal voltage. Moreover, BMS shall read the 
battery capacity of the last cycle from controller memory 
and determine the battery charging SOCinit. According to 
the SOCinit, the estimation is performed as follow: 
(1) If the SOCinit is equal to zero, meaning that it will be 

a complete charging, BMS will calculate the IC curve 
and estimate the battery capacity according to the 
Equation (5). 

(2) If the SOCinit is not equal to zero but smaller than 
60%, BMS will calculate the IC curve and obtain the 
height of Peak C. First is aging correction and BMS 
will determine the SOC correction coefficient 
according to the battery capacity at last cycle (as 
shown in Fig 8). Then is SOC correction and BMS will 
determine the corrected height of Peak C according 
to the SOC correction coefficient and the original 
height of Peak C (as shown in Fig 7). Finally, BMS will 
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estimate the battery capacity according to the 
Equation (5). 

(3) If the SOCinit is larger than 60%, the capacity 
estimation will not be performed during this cycle.  

 
Fig 9 The adaptive capacity estimation based on ICA method 

5. CONCLUSIONS 
This paper presents an adaptive capacity estimation 

based on the ICA method, some conclusions can be 
drawn as below: (1) The battery charging data is noisy 
and the experiment results show that the CLS is an 
effective data smoothing method to obtain the IC curve; 
(2) The IC curves have a downward trend when battery 
capacity decreases. The height of Peak B, Valley B, and 
Peak C has a strong relationship with the capacity 
attenuation and can be employed to estimate battery 
capacity; (3) The battery charging initial SOC will 
influence the shape of IC curves, leading to the blurring 
of features. The proposed correction method according 
to the initial charging SOC and battery aging status is an 
adaptive method for ICA during partial charging.  

Future work will focus on battery aging mechanism 
analysis based on ICA method, as well as the influence of 
battery temperature on ICA curves. Furthermore, the 
proposed adaptive method shall be verified by vehicular 
online application. 
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