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ABSTRACT 
The integrated energy system is considered to be 

introduced in buildings, which proposes a new effective 
approach to improve energy structure in urban areas. 
The optimal design problem of building integrated 
energy system is normally presented as mixed-integer 
nonlinear programming model with deterministic and 
uncertainty parameters. Moreover, the uncertainty 
problem results in a more complex problem at a high 
computational cost. In present work, a two-stage multi-
objective stochastic programming model under 
uncertainty is presented. The proposed model depends 
on clustering method to create different scenarios in 
terms of solar radiation, wind speed and energy demand. 
In addition, the MINLP models of building integrated 
energy system with stochastic scenarios and 
deterministic scenarios is investigated to conduct trade-
off Pareto optimization with cost-optimal and 
environment-optimal. The results indicate that the 
deterministic programming model underestimates the 
cost and carbon emission of building integrated energy 
system, while the result of stochastic programming 
model is closer to the realistic design. 
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1. INTRODUCTION
The integrated energy system (IES) has recently been

considered as an energy-efficient and environmental-
friendly way to deal with the urban energy supply 
problem. The IES usually can be developed in different 
scales according to various kinds of energy end-users. 
Meanwhile, the local energy resource including solar or 
wind can be integrated in IES system to cover the 
building energy demand with better economic and 
environmental benefits. Technically, the building 
integrated energy system (BIES) focuses on the building 
distributed energy supply problem, which needs more 
flexibility and accuracy in modeling and optimization. 
Therefore, the uncertainty modeling and analysis of BIES 
have been conducted to improve the robustness and 
reliability of BIES model. In addition, the stochastic 
programming based on stochastic behavior including 
hourly, daily and seasonal variation in energy resources 
and demands can achieve better optimal solution at a 
higher computational cost. 

The optimal design of BIES has been widely 
investigated in recent years, while the relevant research 
papers are increasing rapidly. Most of the researchers 
established the integrated energy system based on 
MI(N)LP model, in which the commercial solver or 
heuristic algorithm is introduced to find the optimal 
solution. Several representative studies concerning IES 
and uncertainty are as follows. Sharifzadeh et al. [1] 
established an integrated renewable electricity 
generation model in GAMS to optimize the power 
generation considering the uncertainty of wind and solar 
energies. The results demonstrated that at the price of 
higher computational costs, stochastic optimization 
under uncertainty parameters can achieve more realistic 
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and robust solutions for the smart electricity grid design. 
Mavromatidis et al. [2] proposed a single objective (cost-
optimal) stochastic MILP model based on a 10-buildings 
neighborhood IES system in Swiss, in which energy 
carrier prices and emission factors, building heating and 
electricity demands, and incoming solar radiation 
patterns are considered as uncertainty parameters. The 
results of comparison with deterministic model 
illustrated that the deterministic model leads to 
underestimation of the system costs and the renewable 
energy capacity. Li et al. [3] proposed a two-stage 
approach combining multi-objective optimization with 
decision-making for CCHP dispatch problem. Kang et al. 
[4] conducted a robust optimal framework of IES system 
based on life-cycle performance analysis using a 
probabilistic approach. The proposed model enables 
robust optimal design with economic benefits and higher 
total system energy efficiency in the latter years of its 
life-cycle.  

In view of higher complexity caused by the 
uncertainty issue, researches proposed some valid 
methods based on statistics analysis or heuristic 
solutions. Pfenninger [5] analyzed many clustering 
methods to find out the optimum time resolution for IES 
design. The results illustrated that the time resolution is 
so highly dependent on case study that no conclusion of 
optimum resolution can be drawn. Sarshar et al. [6] used 
the artificial neural network (ANN) and wavelet 
decomposition approach to forecast wind power over 
various time horizon and reduce uncertainty. Niu et al. 
[7] conducted a robust optimization model of BIES under 
cooling load uncertainty by means of Monte Carlo 
simulation. The case study of a hospital in Tianjin 
demonstrated the effectiveness and accuracy of the 
proposed model. 

In general, the design of BIES under uncertainty is a 
relatively complex task, which needs to deal with non-
linear problem and several uncertainty parameters with 
high time resolution. Meanwhile, the computational 
capability needed by stochastic multi-objective 
optimization model should be acceptable in common 
computing platforms. Therefore, this study aims to 
explore a stochastic multi-objective optimization 
framework of BIES under uncertainty. Based on the 
hourly meteorological data of solar radiation and wind 
speed, and energy demands simulated by DeST (A 
simulation tool in building energy-consumption), several 
probabilistic uncertainty scenarios are generated by K-
mediods (a typical clustering algorithm) in order to 
accurately represent the characteristics of above 

uncertainty parameters and significantly reduce the 
computational cost. Meanwhile, a MINLP optimal design 
and dispatch model of CCHP system is established in 
GAMS, while some operation constraints including part-
load ratio, on/off limits, and start-limits are introduced in 
the present model to make it closer to practical design. 
The eps-constraint method is implemented to obtain 
Pareto frontier with multi-objective optimization 
(economic and environmental objective). Finally, the 
comparison of the optimal results between stochastic 
and deterministic model for BIES system is analyzed. 

2. METHODOLOGY 

2.1 Two-stage Stochastic Programming and Objectives 

The two-stage stochastic programming is a typical 
stochastic optimization method which is widely-used in 
transportation modeling and supply chain planning. In 
this method, the decision variables of BIES model have 
been divided into two groups including first stage 
(capacity) and second stage (operation), which can be 
described as follows: 
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The two-stage stochastic optimization Eq. (1,2) can 
be further converted into a more simple and clear 
formulation with probability parameters in Eq. (3): 

 ( ) ( )( )min , , ,s s df x y g x yθ ξ+ ⋅∑  (3) 

where θs is the probability of each scenario. 
In the proposed model, the annual total cost and 

annual carbon emission are chosen as two objective 
functions to characterize the economic-environmental 
performance of BIES model. The annual total cost (ATC) 
is one of the most frequently utilized objectives in BIES, 
which includes the capital cost, the fuel cost, the 
maintenance cost, and grid electricity purchasing cost 
and electricity feed-in revenue, as shown in Eq. (4): 
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where CRF is the capital recovery factor, which can be 
calculated by interest rate and project life. The subscript 
t and h denote the selected technologies and hours. The 
symbol s denotes the scenarios generated in section 2.3. 

The environmental objective is another key factor for 
developing integrated energy systems. In this model, the 
annual carbon emissions (ACE) is considered as the 
environmental objective as defined in Eq. (5). 
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where ∂NG and ∂grid are the emission factors of natural gas 
and the grid, respectively. The prob is the abbreviation of 
probability. 

2.2 Model description 

An illustrative renewable assisted BIES optimization 
model is proposed as shown in Fig. 1. The CHP (Internal 
Combustion Engine) is fueled by natural gas, and the 
generated power is integrated with solar PV power, wind 
turbine power, less the potential consumption of the 
electrical chiller (EC) and the air source heat pump 
(ASHP). Interaction with the grid is also enabled 
considering the intermittence of solar and wind power. 
Meanwhile, the heat along with the power generation of 
the CHP is utilized for heating supply by merging the 
heating flow with the boiler and the ASHP, less the 
potential consumption of absorption chiller, and a 
heating storage tank is considered.  

 
Fig. 1 Renewable assisted CCHP-based BIES layout 
Electrical, heating and cooling balances are 

established in accordance with the system layout as 
illustrated in Fig. 1. The electrical demand is fulfilled by 

the solar PV panel, the wind turbine, the internal 
combustion engine, the imported electricity from the 
grid, minus the possible consumption by the electrical 
chiller and the heat pump or export to grid as shown in 
Eq. (6). Meanwhile, the heating demand is satisfied by 
the recovered heat from the internal combustion engine, 
the gas boiler, the air source heat pump (ASHP), 
considering interaction with the heat storage tank, minus 
the possible heat consumption by the absorption chiller 
as presented in Eq. (7). In addition, Eq. (8) illustrates the 
cooling balance, where the cooling demand is fulfilled by 
the electrical chiller and the absorption chiller. 

Electrical balance: 
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Heating balance: 
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Cooling balance: 
 cool cool cool

demand, , ac, , ec, , ,s h s h s hQ Q Q s h= + ∀  (8) 
where s denotes the scenario, h means the hour, which 
is the time step of the proposed model. The 
mathematical formulations of each component are 
presented in Refs. [8-10] 

2.3 Scenario generation 

In present study, the uncertainties in solar radiation 
intensity, wind speed, electric demand, heat demand, 
and cool demand profiles are captured by generating 
representative scenarios as shown in Fig. 2. As the unit 
of electric demand, heat demand, and cool demand is 
kWh, the accumulated value of different kinds of hourly 
energy demand has been characterized as one 
bifurcation point to split into two groups (high energy-
demand cluster and low energy-demand cluster). 
Therefore, three-layer classification including solar 
radiation intensity, wind speed and energy demand is 
considered to generate stochastic scenario, in which 
each layer classification consists of binary clustering by 
means of K-mediods. Before this, all data have been 
manually classified into three groups by summer, winter 
and transition season. Meanwhile, three other scenarios 
have been generated to represent the maximum electric 
demand, heat demand and cool demand, respectively. 
The cluster probability is calculated as the ratio of the 
number of observations assigned to the cluster and the 
total number of observations. 
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Fig. 2 Scenario construction of stochastic scenarios. 

2.4 Computing platform 

For the purpose of comparing and considering the 
practicability, all modelling and optimization are 
conducted on the same computer system, which is an 
ordinary PC with Intel Xeon E3 3.20 GHz and 24 GB RAM. 
The modelling software is GAMS by calling the LINDO 
solver. The length of the planning horizon is 10 years 
assuming the demand and price are stable during this 
period, and the temporal resolution is 1h. The optimality 
setting is 0.1% and other settings remain as default. 

3. CASE STUDY 
To compare stochastic programming approach with 

deterministic programming approach, a case study is 
conducted by implementing the illustrative building 
integrated energy system (BIES) to an all-day operational 
hotel in Beijing in “cold” climate zone of China. 

The uncertainty parameters in this study consist of 
solar radian intensity (SRI), wind speed (WS), and energy 
demand including electricity, heat and cool. The hourly 
meteorological data can be obtained from National 
Meteorological Information Center, while the energy 
demand with hourly resolution is modelled by a building 
performance simulation software named “Designer`s 
Simulation Toolkit (DeST)”. To present the data of 
uncertainty parameters more clearly, the data only for 
one year has been shown in Fig. 3 and Fig. 5. Moreover, 
Fig. 4 illustrates the time-of-use energy prices and energy 
demand, while the solar radiation intensity and the wind 
speed are presented in Fig.3. 

 
Fig. 3 Hourly data of SRI and wind speed in one year 

 
Fig. 4 Time-of-use energy prices 

 
Fig. 5 Hourly data of energy demand in one year 
The details of state-of-the-art technical, economic 

and environmental input parameters are presented in 
Ref. [11], which include internal combustion engine, 
wind turbine, solar PV, boiler, electrical chiller, 
absorption chiller, heat pump, heat exchanger and the 
heat storage tank. 

As mentioned above, several scenarios have been 
generated in two-stage stochastic programming model. 
Meanwhile, the deterministic model has been 
established for comparison with the stochastic model. In 
the deterministic model, the five uncertainty parameters 
have been hourly averaged to construct the typical days 
for each season. 

4. RESULTS AND DISCUSSION 

4.1 Multi-objective optimization results 

The Pareto frontier determined by the ε-constraint 
method is depicted in Fig. 6. The point labeled A in this 
figure shows the result of single-objective optimization 
for stochastic model with the lowest ATC and the highest 
ACE, while A’ is for deterministic model. Point B indicates 
the minimum ACE of this stochastic BIES model with the 
worst ATC, while B’ is for deterministic model. It is the 
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equivalent of a single-objective optimization of objective 
1. All of the points in-between represent the 
minimization of objective 2 with progressively more 
stringent constraints on objective 1, to make it increase. 

 
Fig. 6 Pareto frontier for deterministic and stochastic 

programming model 
It is obvious that improving the ATC value is at the 

cost of increasing the ACE. The trends of Pareto frontier 
for stochastic and deterministic programming are quite 
similar. However, it can be observed that the Pareto 
frontier of deterministic model is nearer to the ideal 
point (cannot be achieved) than that of stochastic model. 
The ACE value of non-dominated solutions in Pareto 
frontier of deterministic programming is in the range of 
1285-1642 (ton/year), while the ATC value is from 
568000 to 616000 ($/year). In the Pareto frontier of 
stochastic model, the range of optimal ATC is 600000-
626000 ($/year), while the ACE is in the range of 1350-
1600 (ton/year). 

4.2 Discussion 

By comparison with deterministic programming, the 
stochastic programming model has much more 
constraints caused by several scenarios, which may 
result in great computation consumption. Therefore, 
there must be a trade-off between scenario number and 
computation cost, especially when some component 
models are non-linear such as PV, Wind turbine or off-
design model, in which polynomial or trigonometric 
function may exist. The conflict between accuracy and 
computing cost is still difficult to solve. 

In this case study, the Pareto frontier of stochastic 
programming is higher (worse) than that of deterministic 
programming. The reason is that the deterministic 
programming neglects the effect of maximum energy 
demand, even though it is relatively rare, which may 

underestimate the cost and carbon emission of BIES 
system. However, in the stochastic model, the maximum 
energy demand scenario with small probability has been 
converted to various constraints in the optimization 
process, which may constrain the capacity of each 
energy-supply component to a relatively high value 
range. In other words, the stochastic scenarios produce 
some lower bounds for the decision variables of capacity 
in the first stage. Meanwhile, it can be found that the 
Pareto frontier’s ranges of the both objective function 
values for stochastic programming are smaller than 
those for deterministic programming. The reason is that, 
with the increase of stochastic scenario number, the 
constraints of model become stronger and more 
complicated, contributing to a decreased amount of 
feasible solutions. Therefore, the gap between the upper 
and lower bound of the objective function value as well 
as their search spaces have been reduced in the 
stochastic programming. 

5. CONCLUSION 
In this paper, a two-stage stochastic programming 

model (MINLP) has been established to optimize the 
design and operation of the renewable assisted CCHP-
based BIES system, which has been implemented on the 
case study of a hotel in Beijing of China. The decision 
variables have been split into two groups including 
capacity setting and dispatch operation. Before 
optimization, the scenario generation using clustering 
method in hourly resolution has been conducted to 
create several stochastic scenarios to capture the 
characteristics of uncertainty parameters including solar 
radiation intensity, wind speed, electric demand, heating 
demand and cooling demand. Moreover, the economic-
environmental multi-objective optimization has been 
addressed to obtain the Pareto frontier by means of eps-
constraint approach. Finally, the comparison between 
the optimization results of deterministic and stochastic 
programming has been conducted and analyzed. The 
major conclusions that have been drawn are as follows: 
(1) The proposed stochastic programming model 

enables the multi-objective optimization of design 
and operation for the BIES system. In addition, the 
optimal Pareto frontier can be obtained by 
integration of the proposed stochastic 
programming model with the eps-constraint 
method. 

(2) The clustering method can capture the 
characteristics of several uncertainty parameters 
through generating various stochastic scenarios. 
With the increasing number of stochastic scenarios, 
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the computational cost rises rapidly, which is 
needed to be controlled at acceptable levels. 

(3) The comparison between the deterministic and 
stochastic programming model illustrates that the 
deterministic programming model underestimates 
the cost and carbon emission of BIES system. The 
proposed stochastic programming model can take 
into account various uncertainty in order that the 
optimization results become more realistic and 
practicable. 
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