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ABSTRACT 
 This paper presents a household battery charging 

and discharging game for a power supply-demand 
regulation in a peer-to-peer energy sharing, operating in 
the day-ahead electricity market. The problem is 
formulated as a noncooperative Nash equilibrium game 
where the households are considered selfish but 
rational players whose objectives are to optimize their 
individual battery state of charge and energy cost. The 
application of the proposed model to a practical case 
study of three households shows the potential of the 
households to regulate the electricity in the smart grid 
and save their energy costs. Households 1, 2 and 3 
operating in the proposed model saved energy costs of 
up to 59.8%, 58.8% and 58.9%, respectively compared to 
them operating in a strictly real-time electricity market 
and household 1, 2 and 3 also had savings of up to 10%, 

3.8% and 8.4%, respectively compared to them operating 
in a strictly day-ahead electricity market.  

Keywords: Day-ahead market, electricity regulation, 
game theory, peer to peer energy sharing, smart grid 

1. INTRODUCTION 

Historically, the electrical power generation follows 
the consumption, however the current rise in economic 
growth has compromised the supply-demand 
robustness and efficiency of the electrical grid [1]. The 
electrical grid can only store a very limited amount of 
the unused generated electricity; therefore, it must take 
crucial steps to maintain stability. An unstable supply 
and demand may cause the power grid frequency to 
drop and rise out of acceptable margins, instantly 
damaging the electricity generating turbines and the 
protective and control equipment in the system, 

consequently leading to a power grid failure, which is 
costly for the electrical grid to repair [2]. Therefore, the 
electrical grid assigns small electrical power systems 
known as smart grids to different electricity markets as 
one of the crucial steps. The electricity market which is 
an electricity division in a municipality enables sales and 
purchases of electricity through bids and sales offers, 
governed by the supply and demand principles generally 
in the form of financial exchanges. Smart grids are 
electricity supply networks that may consist of multiple 
distributed energy resources, customers, energy storage 
units, smart meters and use digital communications 
technology to detect and react to local changes in 
usage. Smart grids mainly suffer from electricity supply 
and load demand unbalance and consequently its 
frequency may undergo rapid changes. A battery energy 
storage system due to its very fast dynamic response 
can play an important role in restoring balance between 
supply and demand. 

Energy storage devices can be employed at the 
residential level to address the problem of electricity 
fluctuation [3]. Households are encouraged to charge 
their batteries using lower energy prices during high-
supply-low demand periods and supplying their loads 
during high-demand low-supply periods. A mixed 
strategy Nash equilibrium game model in a day ahead 
market was used to optimize the power quality of the 
electricity grid and consequently minimize the 
household electricity bills using a real-time pricing 
structure that encourages the households to charge 
their lead acid batteries when there is surplus power 
and discharge their batteries when there is deficient 
power supply [4].  

The modelled system is an open loop that does not 
consider periods when households’ batteries are unable 
to charge as they have reached their maximum capacity 
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or when household batteries are unable to discharge as 
to supply their loads during deficient electricity market 
power supply for they have reached their minimum 
capacity.  

This study introduces a battery bank backup in the 
electricity market for the former case and incorporates 
the peer-to-peer (P2P) energy sharing structure for the 
latter case. Households participate in the P2P energy 
sharing structure periods when the household’s real-
time electricity demand exceeds the electricity 
forecasted, and the deficient power cannot be met by 
the electricity market or by the household batteries. The 
electricity market whose aim is to stabilize the 
electricity in the smart grid, encourages households to 
participate in P2P energy sharing by using an electricity 
tariff that is lower than the time-of-use (TOU) electricity 
tariff, such that, instead of disturbing the power stability 
in the smart grid by buying electricity from the 
electricity market during time periods when neither the 
household batteries nor the electricity market is able to 
meet the household’s real-time load demand, the 
households can buy cheaper electricity from their peers. 
The addition  

 
2. PROBLEM FORMULATION 

 
This study proposes an electricity market regulation 

household battery charging and discharging in a peer-
to-peer energy sharing structure shown in Fig. 1. The 
smart grid is comprised of an electricity market and 
households with batteries and smart meters. The 
electricity market is a profit driven independent agent 
that operates in a day-ahead market. The electricity 
market predicts the households’ load demand by using 
smart meters installed at each residential home, 
essentially to supply only what has been predicted 
because it buys forecasted electricity from the power 
grid at lower rates compared to buying unforested 
electricity. 

 

 
 

Fig. 1 Schematic layout of the energy flow for the proposed 
model at time t. 

 

As shown in Fig.1, a household’s load demand can 
be supplied by either the electricity market 

, ( )market

i tE kWh

, the battery, 
, ( )discharge

i tE kWh , or by its peers, 

, ( )peer

i tE kWh , depending on how much electricity was 

predicted by the electricity market and its battery state 
of charge (SOC).  Households charge their batteries 
from the electricity supplier, arg

, ( )ch e

i tE kWh , in an attempt 

to regulate the supply and demand of electricity market 
by participating in a game called a mixed strategy Nash 
equilibrium. 

 
2.1 Day ahead load prediction 

 
For a simplified load forecasting, this study 

considers the real-time load demand from the previous 
day, 

,

real

i t Tm −
 to be the predicted load demand for 

household i  at time t , ( ),

forecasted

i tm kWh , that is; 

 

, , ,forecasted real

i t i t Tm m −=            (1) 

 
where, T  is the total time periods in a day. This 

study predicts the load demand at every hour, thus 
24T = . The predicted load demand is the real-time 

energy supply, and in real time the electricity market 
wishes to supply only what was exactly predicted. 

 
2.2 Electricity pricing 

The electricity market’s aim to balance the real-time 
electrical load demand 

,

real

i tm  and the forecasted load 

demand 
,

forecasted

i tm  can result in three possible 

outcomes, perfect supply, undersupply and oversupply. 
Perfect supply is when the households’ real-time load 
demand matches with their forecasted load demand. 
Undersupply is when the households’ real-time load 
demand is more than their forecasted load demand. 
Oversupply is when the households’ real-time load 
demand is less than the forecasted load demand.  

 
2.2.1 Oversupply electricity in the market 

 
In oversupply, the electricity market sells the excess 

electricity to the households using pricing rate buy

t  [4], 

for the purpose of charging their lithium-ion batteries, 
which were chosen for this study due to their high 
charging efficiency and long lifespan compared to lead 
acid batteries. 
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The pricing rate ( )/buy

t R kWh that guides the 

charging behaviour of the households’ batteries is 
derived from the basic principle of a straight-line graph 
with a negative slope. ( )/tTOU R kWh  is the point 

where the line graph cuts the y-axis and it represents 
the grid electricity tariff which the electricity market 
uses to bill households for using the forecasted load 

demand at time t , ( )2/R kWh  is the slope of the line 

graph and it represents the time-independent charging 
behavior incentive parameter specified by the electricity 
supplier, ( ),

c

i tB kWh  is the charging profile of household 

i  at time t , ( )tA kWh  is the surplus or deficient 

power of the electricity market at time t , given as;  

( ), ,

1

.
I

forecasted real

t i t i t

i

A m m
=

= −                 (3) 

When 0t t TA A −+ =  the market has a perfect supply 

and ( )/buy

t R kWh  is equal to ( )/tTOU R kWh . When

0t T tA A −+  , the market has an oversupply and 

( )/buy

t R kWh  is less than ( )/tTOU R kWh , encouraging 

households to charge their batteries. The households 
are encouraged by a low charging pricing rate buy

t to 

charge their batteries with arg

, ( )ch e

i tE kWh . When 0tA  , 

the market has an undersupply and ( )/buy

t R kWh  is 

greater than ( )/tTOU R kWh , discouraging households 

from charging their batteries, instead they discharge 
their batteries to satisfy their load demand. When their 
batteries cannot satisfy their load, households enter the 
peer-to-peer energy sharing entity to buy energy from 
their peers. 
 

2.2.2 Undersupply electricity in the market 
 
The peer-to-peer energy 

, ( )peer

i tE kWh  is sold by a 

household using an internal selling rate sell

tz and 

bought by another household using an internal buying 

rate, 
buy

tz .  Peer to peer energy sharing internal pricing 
rates were introduced in [3] and adjusted in [5]. buy

tz  

and sell

tz have two fundamental principles, 1) the 

internal prices are bounded by the cost of buying 
surplus power from the electricity market and the profit 
households get from selling power to the electricity 
market, i.e. market buy sell rate

t t t tz z   .. 2) The internal 

prices are a function of supply and demand ratio (SDR). 
Supply is how much power the households are willing to 
sell, 

tTSP , and demand is how much power is deficient 

for households unable to meet their load demand, 
tTBP

, that is  
1
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= .The internal prices are given 

as; 
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where ( / )market

t c kWh  represents the rate of buying 

unforecasted electricity from the electricity market. 
When the electricity market is in undersupply, 

,

buy

t i tTOU   holds, which violates the first principle. To 

ensure that the market makes a profit, the rate of 
buying from the electricity market is given by;

,

market rate

i t t tTOU = + , where ( / )rate

t c kWh  represents the 

rate, selling household have spent for each kWh  in the 
battery, and it is given by, 1

, , ,

rate battery

i t i t i tb  −=  ,where 

( )battery

t c  is the total cost for the power in the battery 

and given by; arg

, 1 , , 1 1

battery battery ch e buy peer buy

i t t i t t i t tE E z  − − −= +  −  . The 

compensation price market rsate

t t  −= is introduced, to 

ensure households are better off when they participate 
in the energy sharing mechanism. 

 
2.3 Mixed-strategy Nash equilibrium 

In this study, a mixed strategy Nash equilibrium was 
chosen as the optimization problem solver when the 
electricity market is in oversupply such that households 
compete to charge their batteries with the surplus 
electricity. In the mixed strategy players randomize 
between their strategic actions with a probability that 
makes their neighbours actions indifferent, meaning 
that whichever strategic action each player chooses, all 
the players will reach a Nash equilibrium where no 
player can improve on his/her payoff by deviating from 
his/her initial optimal strategy given that the other 
players stick to their optimal strategies. At every time t

, household i  has two strategic actions 

( )
, ,

1 2

, 1 , 0
i t i ti tw w w= = =  each with an assigned probability 

( )
, ,

1 2

, ,
i t i ti t  =  it can play to get its payoff at Nash 
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equilibrium. The payoff function ( ), t ,,i i tw w −  at time t

for household i is given by: 

( ) , ,

,t ,

,
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0,            

+ 1 ,
,

0     if   ,

buy buy

t i t i t

i i t
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where ,i tw  denotes the strategy of household i  

at time t  and ,i tw− denotes the strategies of all 

households other than the household i  at time t. 

, 1i tw =
represents battery charging for household i  at 

time t , 
, 1i tw = − represents battery discharging for 

household i  at time t , and 
, 0i tw = represents an idle 

battery for household i  at time t . 
 
2.4 Optimization model 

The main objective function of the optimization model is 
for the electricity market to minimize the difference 
between the electricity supply and electricity demand in 
the smart grid. To achieve this, the electricity market 
satisfies two objectives. Firstly, households charge their 
batteries when 0tA  .   
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Secondly, households discharge their batteries and 
participate in the peer to peer energy sharing structure 
to account for any deficiencies unmet by the batteries, 
when 0tA  . 
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The charging and discharging of the household batteries 
are incorporated, such that the overall objective 
function with 

,i tB  as the decision variable is given by; 

 
,C DJ J J= +                                  (9) 

 
subject to: 

, , , ,MIN MAX

i t i t i tB B B                            (10) 

, , , ,real battery market

i t i t i tm E E= +                     (11) 
arg

,, ,

arg

,1 ,ch e dis

ii

c

t i

h

t

e

i t tB B E E−= −+                 (12) 

,, , , , ,, if  ,peer real forecasted real forec

t i t

asted

i t i t i i t i tBE m m m m= − −        (13) 

 
where 

,

peer

i tE represents the deficient energy that was 

not met by the electricity market and the household 
battery. 

2.5 Case study 
 
The case study uses three randomly selected 

household load data (household 8, household 77 and 
household 146) from a pool of 300 household load data 
[6] collected over the period 1 July 2012–1 July 2013 in 
Australia. The forecasted demand date was also 
randomly selected to be on the 31st March 2012 and 
therefore the real-time data is the load data on the 1st 
April 2012 as shown in Fig. 2. A 5-kWh lithium ion 
battery was incorporated for each household, and for 
the purposes of simulation, the initial battery SOC for 
household 1, 2 and 3 were respectively randomly 
generated to be 0.2 kWh, 1.1 kWh and 1.3 kWh. The 
Australian summer residential Time of use (TOU) tariff 
[7] was used for electricity consumption. 

 

 
(a)                      (b) 

 

 
 (c) 

 
Fig. 2: Forecasted and real-time load data for a) 

household 1, b) household 2 and c) household 3 
 

3. RESULTS 
The electricity supplier sums the aggregate 

forecasted load data from all three households at each 
hour to procure the required electricity in the day-
ahead market. The real-time load demand can mismatch 
the forecasted load demand. Fig. 3 shows the 
discrepancy between the aggregate real-time load 
demand and the aggregate load supply. The discrepancy 
has been rounded off to the nearest charging rate of 
0.560 kWh, obtained from the division of the highest 
absolute discrepancy by the total number of households 
in the smart grid [2]. 
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Fig. 3: Discrepancy  

 
 When the discrepancy is positive, the households enter 
the game theory charging game to charge their batteries 
with the battery charging tariff buy

t and when the 

discrepancy is negative, the households discharge their 
batteries and purchase energy from their peers with the 
peer to peer energy buying tariff buy

tz , to supply their 

deficient loads that were not met by the electricity 
market or their batteries.  It is evident from Fig. 4  
that during the time periods when the discrepancy is 
negative, the battery charging tariff is higher than the 
TOU tariff and the peer-to-peer energy buying tariff is 
lower than both the TOU tariff and battery charging 
tariff to encourage battery discharging and peer-to -
peer energy sharing. Similarly, when the discrepancy is 
positive, the electricity market has surplus power and 
the battery charging tariff is lower than TOU to 
encourage battery charging. 

   
Fig. 4: Energy buying prices 

 
When the discrepancy is positive, the households 

strategize to increase their battery SOC, and at each 
hour where 0tA  , a mixed strategy Nash equilibrium 

was reached, such that no single player can further 
improve their payoffs by unliterally altering their 
strategies. The mixed strategies of household 1, 2 and 3 
are shown in the bar graphs in Fig. 5, where a battery 
strategy of 1 represents battery charging. 

 
(a) 

 

 
(b) 

 
(c) 

Fig. 5: Battery SOC and mixed strategy for a) household 1, 
b) household 2 and c) household 3 

 
Fig. 5 also shows at what time periods each 

household has discharged its battery to satisfy its load, 
and what times it has bought energy from its peers 
when it alone could not satisfy its own load demand. 
Table 1 shows the energy costs over a 24-hour period 
each household spent to satisfy their load in different 
markets using the pricing system in this paper. As stated 
earlier the pricing systems buy buy sell sell

tt t t tT zU zO    

is met to encourage battery charging and peer to peer 
energy sharing. Therefore, households in a strictly real-
time model, incurred the highest costs. Households in a 
strictly day-ahead regulation market model also 
incurred high costs, because when their batteries are 
unable to meet their load demand, they purchase from 
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the electricity market. Households in the proposed day-
ahead regulation market with peer to peer energy 
sharing incurred the least costs, because when their 
batteries are unable to meet their load demand, they 
first purchase from their peers. Figure 6 shows how 
much households have bought and sold on the P2P 
energy structure. 

 

 
(a) 

 
(b) 

 
Fig. 6:  Amount of energy (a) sold and (b) bought in the 

peer to peer energy structure 
 

Table 1 shows the cost of energy for a real-time 
model with no load forecasting, a load forecasting 
model without P2P energy sharing and the proposed 
model that has load forecasting and P2P energy sharing.  

 
Table 1: Households energy cost for 1st April 2012 

 Household 1 
(AUD) 

Household 2 
(AUD) 

Household 3 
(AUD) 

Real-time  230.8359   645.6291   426.9627 

Day-ahead  103.2236   277.0664   191.5397 

proposed  92.9026   266.4137   175.4839 

 
Households 1, 2 and 3 in the proposed model had energy 

cost savings of 59.8%, 58.8% and 58.9%, respectively 
compared to them operating in a strictly real-time electricity 
market and energy cost savings of 10%, 3.8% and 8.4% 

respectively compared to them operating in a strictly day-
ahead electricity market. The energy cost percentage savings 
were calculated using: 

 
Real-time /Dayahead -Proposedmodel

Saving (%)= *100%
Real-time /Dayahead

i i
i

i i

   (14) 

 
4. CONCLUSION 
 
This paper presented a day-ahead electricity 

regulation system incorporated with peer-to-peer 
energy sharing for a smart grid. The objective of the 
model minimizes the electricity fluctuations in the smart 
grid by regulating the electricity supply and demand. 
Households took advantage of these fluctuations to 
charge their batteries at low energy prices and save 
their energy costs, The analysis of the results presented 
in the paper showed the ability for household batteries 
to regulate the electricity in the smart grid and a huge 
energy cost saving potential for households by 
participating in both the day ahead electricity regulation 
and peer to peer energy sharing. Besides the projected 
savings, the proposed model creates an extra income 
stream for the households through the sale of energy in 
the peer-to-peer energy sharing network. 
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