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ABSTRACT 
 In this paper, we develop a residential grid-level 

optimization model, which incorporates both electrical 
consumption scheduling (ECS) systems and energy 
storage devices (ESDs), so as to lower the peak-to-
average ratio (PAR) of electricity demand and reduce the 
costs of electricity supply and consumption. This model 
consists of three levels: household consumption 
optimization (solo opt), grid consumption optimization 
(base opt) and ESD allocation optimization (ESD opt). To 
evaluate this model, a realistic residential population of 
180 households subdivided into subpopulations by 
household sizes and income levels was simulated using a 
bottom-up randomization approach, with electricity 
supply from conventional thermal generation (CTG). The 
results show that PAR can ideally be reduced to 1 with an 
optimal allocation of ESDs among households with 
positive bills savings.  
 
Keywords: Demand Side Management; Electrical 
Consumption Scheduling; Energy Storage Devices; 
Convex Optimization; Genetic Algorithm 

1. INTRODUCTION  
In order to meet the ever-growing demand for 

electricity, the consumption of limited fossil fuels has 
been increasing steadily over the past few years [1]. At 
the same time, the generation of electricity also 
contributes significantly to the greenhouse gas emissions 
[2]. With these factors in mind, improvements to current 
generation and distribution systems are needed to 
produce electricity more efficiently. 

All power grids are required to have a spinning 
reserve, which refers to the unused capacity which can 
be activated on decision of the system operator and is 
provided by devices synchronized to the grid network 
[3]. Spinning reserve is used to increase the power grid’s 
load to either compensate losses in capacity due to 

breakdowns, or to meet increased demand during peak 
hours. Due to such reserved capacity unutilized during 
average demand hours, generators usually run 
inefficiently at lower capacity. The greater the difference 
between the peak demand for electricity and the average 
demand, the less efficient a generator operates as more 
capacity is reserved to meet peak demand. Thus, the 
power grid would be more efficient when the peak-to-
average ratio (PAR) of electricity demand is reduced. 

Demand side management (DSM) is the planning, 
implementation and monitoring of utility activities that 
are designed to influence customers’ use of electricity 
[4]. The objective of demand side management is to 
reduce peak demand such that PAR can be reduced. DSM 
can be achieved with the implementation of Energy 
Consumption Schedulers (ECS) in a smart grid where 
two-way communications exist between the grid and 
household consumers [5]. This communication allows for 
the real time monitoring of electrical consumption and 
pricing. An ECS consists of a smart meter and a controller 
which can schedule the usage of each household 
appliance based on consumption information. This 
thereby shifts the load away from peak hours and lowers 
the PAR, thus improving grid efficiency.  

There have been many papers aiming to reduce the 
high PAR in the power grid through DSM load shifting 
method. These papers adopt many different methods of 
optimization such as heuristic, mixed integer linear 
programming and agents-based modelling [4, 6-9]. Many 
papers also include the use of energy storage devices 
(ESDs), which are rechargeable batteries that store 
electrical energy through electrochemical reactions [10], 
in their optimization [11-14]. ESDs should assist in 
lowering the demand during peak hours as these can 
store energy during non-peak hours for use during peak 
hours. However, those authors assumed every 
household owns ESD and investigated the effect of ECS 
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and ESD combined on total energy cost and PAR. This 
paper aims to develop and evaluate an approach to 
lower the PAR of electricity demand and reduce the costs 
of supply and consumption of electricity, by determining 
an optimal appliance usage schedule for a simulated 
residential population, while investigating the optimal 
number and allocation of ESDs in a fixed number of 
households with different consumption patterns. 

2. METHODOLOGY  

2.1 Optimization Model & Framework 

There are three levels of optimization as shown in 
Fig. 1a. The solo optimization (opt) is the most inner layer 
and represents the optimization at the individual 
household level. The base opt is the next layer where the 
optimization is performed at the residential grid level. 
Lastly, the ESD opt uses a genetic algorithm that searches 
for the optimal ESD allocation amongst households 
within the residential grid. 

The solo and base opt is an autonomous demand-
side energy management scheme based on the research 
done by Mohsenian-Rad et al. [15], in which time is 
discretized into 24 one-hour periods. Using a game-
theoretic approach, it is possible to develop an incentive-
based pricing scheme whereby each household 
communicates their energy consumption vector (ECV) 
with one another. Through an iterative convex 
minimization problem (each problem is one solo opt), it 
is shown that the global minimum for the total energy 
generation cost (TEC) can be achieved. Moreover, by 
minimizing TEC, the bills to each consumer as well as PAR 
would be minimized simultaneously. 

A single convex minimization problem (a solo opt) is 
performed by a household whose objective is to 
minimize their total electricity bills by shifting shiftable 
electrical appliances using an ECS. It is important to note 
that the ECS only shifts usage of shiftable electrical 
appliances which households do not mind shifting (such 
as electrical vehicles or washing machines whereby their 
exact usage time periods do not matter). Other authors 
have quantified the cost of inconvenience as 
dissatisfaction cost [14]. For simplicity in our analysis, we 
do not consider the cost of changing habits in the 
objective function as households are only shifting 
shiftable appliances. 

The base opt is simply the iterative solving of the solo 
opt for all households in a round robin style (Fig. 1b) till 
the total electricity cost converges to the global 
minimum [15]. Each full round of base opt is carried out 
using an ESD allocation vector (0 being the household 
represented by the vector’s index not having an ESD and 
vice versa) and outputs a final TEC, PAR, and bills (�) for 
each consumer. Hence, the base opt can be seen as a 
black box function that maps a particular ESD allocation 
vector (ψ) to its grid properties as such: 

[��� ��� �]� = �(�) (1) 
With the black box function, any heuristic optimizer 

could be used to search for an optimal ψ that gives the 
best grid properties. Before running each base opt, each 
household can be assigned an ESD (or not) and is 
indicated by a binary variable (1 or 0). If a household has 
been allocated an ESD, the ESD constraints will be 
activated for that particular convex minimization that 
the household will perform in each solo opt, in addition 

 
Fig 1 Optimization model. a) The three levels of optimization in the model. b) Depiction of the base opt procedure. 
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to the ECV constraints that all households have. Since TEC 
and bn are related [15], only TEC and PAR need to be 
considered. A fitness function can be defined to achieve 
a particular property, for example: 

1. To minimize sum of energy generation and ESDs 
cost (first fitness function; FF1): 

�(���) = ��� + �������� (2) 
2. To minimize the sum of energy generation and 

ESDs cost, as well as reducing the PAR to a 
desired level (second fitness function; FF2): 

�(���) = ��� + �������� + �|��� − ����| (3) 
where PARD is the desired PAR level and M is some 
sufficiently large positive constant.  

While FF1 will reduce the sum of electricity and ESD 
costs, since the allocation of each subsequent ESD carries 
a diminishing marginal benefit, the heuristic optimization 
will generally allocate an ESD to an insufficient number 
of households to reduce PAR to a low enough value (i.e., 
close to 1). Hence, the additional term is required to add 
a penalty for PAR being too high. This forces the 
algorithm to provide a solution with more ESD 
allocations, equivalently, a solution with the PAR closer 
to the desired level. If M is made large enough, the PAR 
can be made arbitrarily close to the desired level. In our 
later analysis, we defined our desired PAR level equal to 
1 to evaluate if we can obtain a feasible optimal ESD 
allocation and the accompanying cost savings. A low PAR 
equates to larger fixed cost savings in the design stage of 
a plant and will be further discussed in Section 3. We 
used a genetic algorithm (GA) as the heuristic optimizer. 
The GA was implemented in Python using the DEAP 
library [16]. 

 
 

2.2 Producer-Side Modelling 

To develop a realistic cost function, we implemented 
an optimal dispatch of conventional thermal generators 
(CTG) [17]. The power supplier is assumed to have 9 CTG 
with the following quadratic form �(�) = �� + ��� +
���

�, each with their own set of coefficients and range of 
energy production. The producer then optimizes which 
generators to turn on and their energy production rates 
to meet the required energy demand whilst minimizing 
TEC. 

Mixed Integer Convex Programming is conducted for 
many different values of �� (~10,000 points) to obtain 
their respective optimal ��, and a quadratic regression 
of these points is performed to obtain an overall 
quadratic cost function (Fig. 2). This allows for a realistic 
cost function as well as a more computationally efficient 
solving of the convex minimization in the solo opt.  

Lastly, the range of CTG energy generation can be 
rescaled to match the range of electrical consumption by 
our simulated residential population by rescaling the 

quadratic cost function as �(�) = ����� + ���� +

���
����/�, where N is an empirical scaling factor and 0 

< k < 1 is an empirical exponent factor for fixed costs. 

2.3 Consumer-Side Modelling 

In our research, 35 household electrical appliances 
have been identified and categorized into shiftable and 
non-shiftable appliances. As it is difficult to obtain 
sufficient large and complete datasets for our 
optimization model, we have developed a version of the 
bottom-up randomization methodology modified from 
[18, 19] to achieve variability in generating realistic 
datasets for testing our model. Three subpopulations, 

 
Fig 2 Cost function of CTG. a) MICP model for solving optimal �� . b) Regressed CTG quadratic cost function. 
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each containing sixty simulated households, are created 
and differentiated by varying appliance ratings, 
ownership and usage, to simulate differences in 
household sizes and income levels for economic analysis 
on the optimal ESD allocation. The three subpopulations 
(1, 2, and 3) are in descending order of economic 
wellbeing. This translates to differences in their 
electricity consumption with richer households generally 
consuming more electricity. For shiftable appliances, 
appliance ratings and usage durations for each 
household are sampled from normal distributions (the 
distribution mean being typical literature values), within 
a pre-specified percentile interval depending on 
subpopulation. Appliance ownership is also randomly 
assigned depending on subpopulation. Thereafter, the 
earliest usage start time α, latest end time β, daily usage 
duration γ and daily shiftable load δ can then be 
generated for each household, which serves as 
constraints for the solo opt. For non-shiftable appliances, 
hourly energy consumption data for all such appliances 
are instead aggregated after undergoing a similar 
randomization procedure for appliance ratings and 
ownership. 

2.4 Energy Storage Device (ESD) Modelling 

ESDs will be used by individual households to store 
energy during off-peak hours for use during peak hours. 
Such systems usually include an AC-DC rectifier to charge 
the battery from the grid, a battery to store the energy, 
as well as a DC-AC rectifier to convert the battery’s DC 
output to AC for household use. In this case, charging the 
battery would contribute to the ECV, with the charging 
hours and charging rate being scheduled by the 
ECS.  Likewise, the ECS will also schedule when to 
discharge the batteries to minimize total generation 
cost. There are several constraints for any ESD. These 
include the capacity of the ESD, the maximum charging 
rate of the ESD, as well as the maximum discharge rate 
of the batteries. To simplify our model, only a single 
model of ESD will be used, and the daily cost of the ESD 
will be calculated using a straight-line depreciation 
model as follows: 
Daily depreciation expense

=  
(ESD cost +  Installation cost) − ESD Scrap value

Total number of warranted cycles
 

In this case, the scrap value of the ESD will be 
assumed to be 10% of the ESD device cost, and it is 
assumed that each battery will only cycle once per day. 
Furthermore, a 100% round-trip efficiency of the ESD 
(i.e., how much of the energy used to charge the 
batteries is recovered during discharging) is 

assumed.  Likewise, degradation of the cells used in the 
batteries will also be ignored for their entire life cycle. 

Only complete ESD systems which can be seamlessly 
integrated into the household without any other 
equipment will be considered for this study, and 
specifically, the Tesla Powerwall 2 was chosen for this 
study by considering cost, capacity, as well as maximum 
charging and discharge rates [20, 21]. 

3. RESULT AND DISCUSSION  

3.1 Increasing ESD Allocation 

Increasing the fraction of households having ESDs 
(i.e., unit increase in ESDs allocated) was found to have 
diminishing benefits to reducing electrical costs. In a 
simplified model of 60 consumers. We found that 
allocating 30 ESDs allowed for electrical cost savings of 
about S$500 compared to electrical cost when no ESDs 
were allocated. However, allocating another 30 more 
ESDs (i.e., all consumers have ESDs) only saved 
approximately by another S$100. Since the daily 
depreciation cost per day for owning a unit of ESD was 
found to be S$2.60 [20], the optimal fraction of 
consumers (value between 0 and 1) is a non-trivial 
solution we solved using Genetic algorithm. 

3.2 Results of Base Opt and ESD Opt 

Consistent with results from [15], we managed to 
also reduce the total electricity cost for each consumer 
(i.e., 2.57% savings) and PAR after base opt for our 
consumer model to S$1624.51 and 1.66 respectively 
(Table 1).  

Our ESD opt utilized genetic algorithm with specified 
parameters (i.e., 100 generations of 100 population). We 
tabulated the results from optimizing ESD allocation 
from two different ESD opts, one minimizing PAR and 
one without (Table 1). The table also showed the results 
from base opt as baseline comparison. 

Using FF1, we saw a drop in PAR and total generation 
cost from base opt as expected. But with FF2, we could 
further decrease PAR to 1 while minimizing total 
generation cost. Unsurprisingly, the optimal number of 
ESDs solved (~70) was much higher than from the first 
fitness function (~26). However, there was a trade-off for 
reducing PAR to 1. Despite an increased in bill savings 
(excluding cost of ESDs) to each consumer to nearly 
11.3% up from 2.57% from base opt. The effective 
savings if we included the cost of allocated ESDs dropped 
to 1.1%, which made each consumer worst off than 
without the ESD allocation. However, reducing PAR to 1 
from base opt alone (i.e., only ECS in effect) is an 
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impossible task [22]. Hence, with ESDs being 
implemented to selected households, reducing PAR to 1 
became possible which may generate benefits that 
outweigh the cost from lowered individual savings of 
~1.1%.  

Interestingly, for both ESD opts, ESDs were allocated 
to households of richer background (i.e., owning more 
household appliances and hence consuming more 
electrical energy). We found that ESDs were more likely 
to be allocated to households from group 1; number of 
ESDs allocated decreases from group 1 to 2 to 3. This 
observation is in line with our logical understanding that 
ESDs can store more and later discharge for more 
energy-intensive households, thereby generate greater 
cost savings. We summarized the performance of our 
ESD opt in terms of total generation cost as well as PAR. 
In all, we repeated each ESD opt type (both fitness 
functions) 3 times and we can visualize the consistent 
results obtained from our genetic algorithm optimization 
for ESDs allocation (Fig. 3). Note that in 2 full iterations 
of 180 households/consumers each, we were confident 
that the results obtained were at optimal. 

3.3 Economic Analysis 

Based on the exact cost savings (in nominal terms) 
for our consumer model after ESD, the largest cost 
savings generated for a household was given as 
S$1.53/day for FF1 and S$2.03/day for FF2. Both cost 
savings were still less than the per day depreciation cost 
for one unit of ESD, S$2.60, and hence not a single 
consumer would be willing to self-purchase an ESD to 
reduce his/her electrical cost. However, our ESD opt was 
found to optimally allocate a non-zero fraction of 0.1425 
and 0.3851 of households for FF1 and FF2 respectively. 
The allocation could achieve a more socially optimal 

 
Fig 3 PAR and total generation cost. a) PAR for every iteration for 
a total of 360 iterations with base opt and 6 ESD opt runs. b) Total 
generation cost for every interaction for a total of 360 iterations 
with base opt and 6 ESD opt runs. 

Table 1 Summarized results from Base opt and two ESD opt types, one w/o minimizing PAR (FF1) and one w/ minimizing PAR (FF2). 

 
Base Opt 

(1) 
ESD opt w/o 

PAR (1) 
ESD opt w/o 

PAR (2) 
ESD opt w/o 

PAR (3) 
ESD opt w/ 

PAR (1) 
ESD opt w/ 

PAR (2) 
ESD opt w/ 

PAR (3) 

Savings excluding ESDs (%) 2.57 8.27 8.57 8.27 11.3 11.3 11.3 

Savings including ESDs (%) 2.57 4.58 4.58 4.58 1.15 1.15 1.00 

ESD Allocation 0 25 27 25 69 69 70 

Fraction of consumer model 0 0.139 0.15 0.139 0.383 0.383 0.389 

ESD allocation to each group 
1,2,3 

0,0,0 12,11,2 16,9,2 15,9,1 27,27,15 29,25,15 24,27,19 

Total Initial Cost (S$) 1760 1760 1760 1760 1760 1760 1760 

Total Generation Cost (S$) 1624.5 1529.5 1524.5 1529.5 1478.4 1478.4 1478.4 

Total Cost (S$) 1624.5 1594.5 1594.7 1594.5 1657.8 1657.8 1660.4 

PAR 1.66 1.4 1.37 1.4 1 1 1 

Largest Cost Savings (S$) - 1.48 1.53 1.48 2.03 2.03 2.03 
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result which we saw an overall reduction in electrical cost 
savings for everyone (i.e., households without ESDs also 
get to enjoy savings). Hence, households with ESDs have 
positive spillover effects onto other households without 
ESDs as total generation cost can be further reduced. In 
that note, the responsibility of supplying ESDs lies with 
electrical companies or public body to possibly subsidize 
ESDs due to positive externalities present.  

Lastly, at a power plant design stage, if it can be 
forecasted and guaranteed that PAR would be at a 
certain low level (i.e. close to 1) through the usage of an 
optimal ESD allocation using FF2, the power plant needs 
not to invest in extra spare capacity to meet peak load 
demands. Thus, this reduction in fixed cost will lead to 
more cost savings for both consumers and producers. 

4. CONCLUSION 
In our study, we incorporated the optimization of 

ESD allocation on top of ECS and found improvements to 
further reducing total generation cost and PAR which 
translated to higher bill savings to each consumer. Our 
work showed that the implementation of optimal 
allocation of ESDs into the grid can potentially reduce 
PAR to an ideal value of 1 (i.e., perfectly flat profile load 
demand profile). In our future work, we can quantify the 
benefits from reducing PAR and better evaluate the 
results obtained from FF2. While the results showed a 
decrease in bill savings for each consumer compared to 
base opt, the cost savings derived from a perfectly flat 
load profile can be quantified (i.e., savings from 
eliminating the need to build peak generators) and pass 
on these cost savings onto consumers. This would be 
important in the design stage of building new electrical 
grids in urban cities.  

 

ACKNOWLEDGEMENT 
The authors acknowledge the National Research 

Foundation, Prime Minister’s Office, Singapore under its 
Campus for Research Excellence and Technological 
Enterprise (CREATE) programme. 

REFERENCE 
[1] S.-H. Yoo, The causal relationship between electricity 
consumption and economic growth in the ASEAN countries, 
Energy policy, 34 (2006) 3573-3582. 
[2] D. Weisser, A guide to life-cycle greenhouse gas (GHG) 
emissions from electric supply technologies, Energy, 32 (2007) 
1543-1559. 
[3] Y. Rebours, D. Kirschen, What is spinning reserve, The 
University of Manchester, 174 (2005). 
[4] L. Gelazanskas, K.A. Gamage, Demand side management in 
smart grid: A review and proposals for future direction, 
Sustainable Cities and Society, 11 (2014) 22-30. 

[5] J. Lee, H.-J. Kim, G.-L. Park, M. Kang, Energy consumption 
scheduler for demand response systems in the smart grid, Journal 
of Information Science and Engineering, 28 (2012) 955-969. 
[6] T. Logenthiran, D. Srinivasan, T.Z. Shun, Demand side 
management in smart grid using heuristic optimization, IEEE 
transactions on smart grid, 3 (2012) 1244-1252. 
[7] P. Samadi, A.H.M. Rad, R. Schober, V.W. Wong, Advanced 
Demand Side Management for the Future Smart Grid Using 
Mechanism Design, IEEE Trans. Smart Grid, 3 (2012) 1170-1180. 
[8] Y. Li, W. Yang, P. He, C. Chen, X. Wang, Design and 
management of a distributed hybrid energy system through smart 
contract and blockchain, Applied Energy, 248 (2019) 390-405. 
[9] S. Noor, W. Yang, M. Guo, K.H. van Dam, X. Wang, Energy 
Demand Side Management within micro-grid networks enhanced 
by blockchain, Applied energy, 228 (2018) 1385-1398. 
[10] M.R. Lukatskaya, B. Dunn, Y. Gogotsi, Multidimensional 
materials and device architectures for future hybrid energy 
storage, Nature communications, 7 (2016) 12647. 
[11] D. Setlhaolo, X. Xia, Optimal scheduling of household 
appliances with a battery storage system and coordination, 
Energy and Buildings, 94 (2015) 61-70. 
[12] T. Hubert, S. Grijalva, Modeling for residential electricity 
optimization in dynamic pricing environments, IEEE Transactions 
on Smart Grid, 3 (2012) 2224-2231. 
[13] C.O. Adika, L. Wang, Smart charging and appliance scheduling 
approaches to demand side management, International Journal of 
Electrical Power & Energy Systems, 57 (2014) 232-240. 
[14] O. Longe, K. Ouahada, S. Rimer, A. Harutyunyan, H. Ferreira, 
Distributed demand side management with battery storage for 
smart home energy scheduling, Sustainability, 9 (2017) 120. 
[15] A.-H. Mohsenian-Rad, V.W. Wong, J. Jatskevich, R. Schober, 
A. Leon-Garcia, Autonomous demand-side management based on 
game-theoretic energy consumption scheduling for the future 
smart grid, IEEE transactions on Smart Grid, 1 (2010) 320-331. 
[16] F.-A. Fortin, F.-M.D. Rainville, M.-A. Gardner, M. Parizeau, C. 
Gagné, DEAP: Evolutionary algorithms made easy, Journal of 
Machine Learning Research, 13 (2012) 2171-2175. 
[17] N.I. Nwulu, X. Xia, Multi-objective dynamic economic 
emission dispatch of electric power generation integrated with 
game theory based demand response programs, Energy 
Conversion and Management, 89 (2015) 963-974. 
[18] A. Grandjean, J. Adnot, G. Binet, A review and an analysis of 
the residential electric load curve models, Renewable and 
Sustainable energy reviews, 16 (2012) 6539-6565. 
[19] R. Yao, K. Steemers, A method of formulating energy load 
profile for domestic buildings in the UK, Energy and buildings, 37 
(2005) 663-671. 
[20] T. Motors, Tesla Powerwall, 
https://www.tesla.com/sites/default/files/pdfs/powerwall/Powe
rwall%202_AC_Datasheet_en_northamerica.pdf, (2018). 
[21] L. Li, P. Liu, Z. Li, X. Wang, A multi-objective optimization 
approach for selection of energy storage systems, Computers & 
Chemical Engineering, 115 (2018) 213-225. 
[22] Y. Liu, C. Yuen, S. Huang, N.U. Hassan, X. Wang, S. Xie, Peak-
to-average ratio constrained demand-side management with 
consumer's preference in residential smart grid, IEEE Journal of 
Selected Topics in Signal Processing, 8 (2014) 1084-1097. 


