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ABSTRACT 
 Modelling and optimization of a large-scale urban 

energy system with sufficient spatial resolution is a 
complex challenge. By proper clustering technique, a 
large-scale problem could possibly be divided into small 
ones with high spatial resolution and accuracy. Existing 
literature tends to lower the complexity of large-scale 
urban energy system problem by accumulating demand 
profiles on the spatial dimension. This study proposed a 
new combined clustering approach which considers not 
only the spatial dimensions, but also the load 
characteristic of all buildings to solve a large-scale urban 
energy-water nexus optimization problem. The load 
complementarity can level off the total demand profile, 
which is helpful to obtain more economic benefit. The 
approach can divide district with a large number of 
buildings into small clusters including fewer buildings. By 
using complementarity indexes, the load heterogeneity 
of each cluster can be assessed. And the density of each 
cluster is used to investigate the distance among 
buildings within the same cluster. The combined 
clustering approach consists of two different routes: one 
is to lower down complementarity index with density as 
constraints; the other one is evaluating both two criteria 
simultaneously as a single objective. Through a case 
study, the proposed combined clustering approach can 
generate a new clustering map and finally save 4.4% total 
cost compared to density-based clustering approach. 
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NONMENCLATURE 

Abbreviations 

AE alkaline electrolyser 
ATC annualized total cost 
CAPEX capital expenditure 
CHP combined heating and power 
OPEX operating expense 
PEME proton exchange membrane 

electrolyser 
STDEV standard deviation 
PAR peak to average ratio 

Symbols 

Edem electrical demand  
Eim electricity imported from main grid 
ECHP CHP electricity generation 
Eex electricity fed into main grid 

Eec 
electricity consumed by electrical 
chiller 

Ehp electricity consumed by heat pump 
EAE electricity consumed by AE 
EPEME electricity consumed by PEME 

Ecomp 
electricity consumed by hydrogen 
compressor 

Ebcomp 
electricity consumed by booster 
compressor 

Epv PV electricity generation 
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1. INTRODUCTION 
Sustainable urban energy system (UES) has already 

become a more environmental-friendly option to fulfill 
the energy demand of buildings by combining local 
renewable energy sources [1]. It can be built as 
decentralized mode to solve large scale system optimal 
problems with significant economic benefits compared 
to conventional ones [2]. Besides, such problems of 
dealing with design or operation plan for decentralized 
urban energy system are usually formulated as Mix 
Integer Linear Programming (MILP) by researchers [3], 
[4]. In addition, the inter-relation of production and 

consumption between energy and water are increasingly 
important, which will influence the city planning and 
management [5]. It is essential to consider the urban 
energy-water nexus system problem from economic or 
other objective aspects.  

Moreover, solving large scale energy system 
problems through MILP can be computationally time-
consuming. This is caused by the large number of integer 
variables and model constraints. Spatial clustering 
approach for neighborhood or larger area is a commonly 
used techniques to reduce problem scale so as to save 
solving time and increase solution accuracy [6], [7]. 
Meanwhile, recent study [8] shows that demand 
complementarity is also a factor to lower down the final 
system cost by leveling off the total demand profile. So, 
it is valuable to consider both spatial and load 
characteristics while dividing buildings into different 
clusters.   

2. COMBINED CLUSTERING APPROACH  
The proposed combined clustering approach 

considers not only the spatial characteristics of each 
building but also the load complementarity in every 
cluster. For the density-based clustering method 
(OPTICS), it divides all buildings into several clusters by 
evaluating the distance between each building while the 
buildings those are too far away from their neighbors, 
where the distance among them are larger than the 
assigned threshold, will be regarded as outliers [9]. This 
decomposition process can reduce the computational 
time and improve the accuracy of solution. The cluster 

with the lowest density indicates the shortest mean 
distance of each building within it. As for the load-based 
clustering process, two complementarity indexes are 
utilized, i.e., STDEV and PAR, to explore three types of 
loads’ characteristics. The lower the complementarity 
index, the more heterogeneous the total load profile is. 

The approach can be further divided into two routes, 
where the order of dealing with two criteria are 
distinguished. The first one evaluates the load criterion 
with the density as a constraint, while the second one 
explores two criteria simultaneously.  

2.1 Route 1 

Based on the basic clustering results, the density of 
each cluster will be increased by 10% to obtain new 
clustering maps. The new maps forming process consists 
of two strategies: combining two basic clusters as one or 
adding one outlier building in a basic cluster. Then, 

 
Fig 1 The structure of the proposed combined clustering approach. 
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complementarity index of each new cluster, with higher 
density than before, is calculated each time and the 
results showing lower index value will be selected. In 
addition, new clustering maps are generated and the 
system design optimization module can be further 
applied for each new clustering result. At last, the new 
clustering map with the lowest system cost result will be 
regarded as the final option.  

2.2 Route 2 

Similar with the former route, Route 2 is based on 
basic density clustering results as well. A SUM function is 
formulated to evaluate two criteria simultaneously, as 
shown in Eq. 1. 

 CISUM DT      (1) 
where α and β are weighting factors. DT is DENSITY 

and CI denotes Complementarity Index. The basic SUM 
function will be calculated with the initialized weighting 
factor values. Then, the similar process as stated in Route 
1 can generate a new clustering map with the lowest 
SUM function value. Based on the updated clustering 
results, the energy system design can be further 
optimized. Furthermore, a tuning loop of changing 
values of α and β will be conducted for a sufficient 
number of times (e.g. 30 times in this case) in the interval 
[0-1], a specific clustering map with corresponding 
objective optimization results will be generated each 
time. At last, the clustering map with the best objective 
results will be selected.  

3. MODEL DESCRIPTION  
The proposed structure of future urban energy-

water nexus system is illustrated by Fig 2. An energy hub 
model is formulated with five types of energy balances, 
namely, heating, cooling, electricity, water and 
hydrogen. The water from the city grid or rainwater 
collection system will fulfill the water demand of energy 
supply techniques, such as boiler, fuel cell and chiller. 
Meanwhile, two available hydrogen production 
technologies, i.e., AE and PEME, will satisfy the needs of 
fuel cell vehicles. A brief description of the mathematical 
equation is as follows. Eq. 2 displays the energy balance. 
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where Edem, Eec, Ehp, EAE, EPEME, Ecomp, Ebcomp, and Eex are 
electricity demand and power consumed by electrical 
chiller, heat pump, AE, PEME, hydrogen compressor, 
booster compressor and electricity exported, 
respectively; Epv, ECHP and Eim are power generated by PV, 
CHP and imported from grid, respectively. 

The objective function is to minimize the annualized 
total cost (ATC) for design and operation, including the 
pipe cost. It consists of the capital expenditure (CAPEX) 
and the operating expense (OPEX), where OPEX includes 
the fuel cost, the maintenance cost and the cost of water 
and electricity imported. All the cost values are counted 
in US dollars ($) in the present study.  
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Fig 2 Illustration of a future urban energy-water nexus system. 
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where CRF is the capital recovery factor, FC, MC, WC, 
GC are fuel cost, maintenance cost, water cost and grid 
cost, s and h represent seasons and hours, respectively. 

4. CASE STUDY 
To verify the proposed combined clustering 

approach, a case study at a district with 60 buildings in 
Shanghai, China is conducted. There are five kinds of 
buildings with various load characteristics in this area, 
i.e., office, shopping, hotel, recreation and exhibition. 
Moreover, each building can connect to others with 
flexible network connectivity. In addition, the energy hub 
will be built in the building with the highest energy 
demand in each cluster, while the outlier buildings will 
build their own systems.  

The system model is built in GAMS calling CPLEX 
solver on a PC with CPU of Core i7, 8 GB RAM, the CPU 
time ranges from 35 to 45 seconds for different clusters. 
The pre-clustering process is conducted in Spyder using 
Python 3.6.  

5. PRELIMINARY RESULTS  
Based on the final cost (ATC) results obtained from 

Route 1, the difference of basic and new clustering map 
is illustrated by Fig 4. 

By considering both density and load characteristics, 
cluster 2 (C2) adds one more building into the original 
clustering result with a longer network. In this case, the 
pipe cost of basic C2 increases from $70,523 to $82,763. 
Nevertheless, as indicated by Fig 5, both capital cost of 

energy supply techniques and OPEX lower down by 4.5% 
and 4.3%, respectively. The total economic objective 
(ATC) of basic C2 and the outlier, reduce 4.4% (i.e., 
$304,699). 

 

Compared to the existing method, which either 
aggregates all buildings as one cluster with less 
resolution or models for individual building with long 
computational time (up to days), the proposed method 
achieves a compromise with sufficient efficiency and 
accuracy. Moreover, as a large-scale district 
development tends to be phased in stages in practice, 
the proposed method can be an effective decision-
supportive tool for the design of district-level urban 
energy systems.  

 
Fig 3 Building categories (a) and location map (b) of the case study. 
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Fig 5 Cost results comparison. 
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6. CONCLUSION AND FUTURE WORK 
The proposed combined clustering approach divides 

larger scale problems into smaller ones by taking 
buildings’ load characteristics into consideration. It can 
be an efficient solution for solving the optimization 
problem of future urban nexus systems. The results 
indicate that building types can affect the heterogeneity 
of total demand profile in each cluster and further 
influence the CAPEX and OPEX of the nexus system. In 
addition, a cluster with lower heterogeneous index may 
reduce final economic results.  

In future work, Route 2 of the combined clustering 
approach will be further explored to solve the 
optimization problem. Comparisons between two routes 
will be conducted in-depth. Moreover, the impacts of 
two criteria on the final cost results will be investigated. 
Besides, the applicability of different physical clustering 
method, e.g., K-means and OPTICS, will be also studied 
to explore the effect to districts with various spatial 
characteristics. 
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Fig 4 Comparison of clustering results (a) basic clustering map through density-based approach (b) new clustering map through 

combined clustering approach. 
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