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ABSTRACT 
 In this paper, an optimal strategy for greenhouse 

climate control is proposed. The objective is to minimize 
the total energy cost for greenhouse heating and cooling 
while keeping the greenhouse climatic conditions 
(temperature, relative humidity, carbon dioxide 
concentration) within required ranges. A dynamic model 
with three inputs and three outputs is adopted. The 
time-of-use electricity tariff is considered to calculate the 
energy cost. The proposed strategy is compared with an 
optimal control strategy which aims at minimizing the 
total energy consumption. In order to reduce the impact 
of system disturbance, a model predictive control (MPC) 
method is presented. The performance index (relative 
deviation mean) of the proposed MPC and an open loop 
control are calculated under 2 % system disturbances. 
The results show that compared with the strategy of 
minimizing energy consumption, the proposed strategy 
has higher energy consumption but lower cost. 
Moreover, MPC has better tracking performance than 
open loop control.  
 
Keywords: Greenhouse climate, Energy cost, Time-of-
use, Model predictive control  
 

NONMENCLATURE 
 

Abbreviations  

MPC Model Predictive Control 
RDM Relative Deviation Mean 
TOU Time-of-use 

 

1. INTRODUCTION 
Greenhouses provide suitable growth conditions for 

crops to increase crop yields and improve production 
quality [1]. Lots of energy is consumed to keep the 
climate factors in the greenhouse within the required 
range [2-3]. To reduce energy consumption, many 
different control strategies are proposed. For example, a 
strategy of decreasing the energy consumption of 
electric heaters in a greenhouse is studied in [4]. A 
control approach of greenhouse heating using 
computational fluid dynamics and energy prediction 
model for energy saving is proposed in [5]. These control 
methods can reduce energy consumption, but the 
energy costs may still be high. There are also some 
studies focusing on different methods to minimize the 
energy cost of greenhouse control. For instance, a 
hierarchical control approach to minimize the total 
energy cost and demand charges is proposed in [6]. In 
[7], the potential of a solar water system for reducing 
heating cost is studied.  

In this paper, an optimal control strategy is proposed 
to minimize the total energy cost under the time-of-use 
(TOU) electricity tariff. The TOU tariff is a policy to 
encourage people to shift load from the peak period to 
the off-peak period [8]. The application of peak load 
shifting strategy for energy cost savings can be found in 
[9-11].  

Moreover, in order to reduce the impact of system 
disturbances, a model predictive control (MPC) strategy 
is introduced and is compared with an open loop control 
strategy. MPC can effectively address system 
disturbances and has been applied to building energy 
efficient optimization [12], hybrid power system energy 
dispatching [13], heavy-haul trains operation 
optimization [14], energy-water management in urban 
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households [15], and dynamic economic dispatch of 
power generation [16].  

The rest of this paper is organized as follows. The 
greenhouse climate model is proposed in Section 2. The 
simulation results are shown in Section 3. Section 4 is the 
conclusion. 

2. SYSTEM DESCRIPTION  
The greenhouse climate control system studied 

includes three inputs (heating/cooling, ventilation, and 
CO2 injection) and three outputs (temperature, relative 
humidity and CO2 concentration). The system 
disturbances include the outdoor temperature, 
humidity, CO2 concentration, and solar radiation, etc. 
Figure 1 is the schematic diagram of a greenhouse 
climate control system. 
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Fig. 1. Greenhouse climate control system. 

2.1 Greenhouse model 

In this paper, the models presented in [17] and [18] 
are adopted and given by: 

( )cov

d 1air
sun lamp trans vent c

cap

T
Q Q Q Q Q Q

dt C
= + − − − +   (1) 

where Tair is the temperature in the greenhouse, Ccap is 
the heat capacity of air, Qsun is the incoming radiation 
power, Qlamp is the lamp heating power, Qcov is the heat 
transfer through the cover, Qtrans is the energy extraction 
due to crop transpiration, Qvent is the energy lose through 
ventilation, Qc is the controlled heating or cooling power.

( )cov

1air
trans vent

dH
H H H

dt h
= − −                    (2) 

where Hair is the humidity in the greenhouse, h is the 
average height of the greenhouse, Htrans is the vapour 
evaporated by the crop, Hcov is the vapour condensation 
to the cover, Hvent is the humidity change due to 
ventilation. 

( )
1air

inj ass vent

dC
C C C

dt h
= − −                       (3) 

where Cair is the CO2 concentration in the greenhouse, Cinj 
is the CO2 injection rate, Cass is the CO2 assimilation 

speed, Cvent is the CO2 concentration change caused by 
ventilation. Qvent, Hvent and Cvent are related to the 
ventilation rate gv. 

 

2.2 System constraints 

The system constraints include inputs constraints 
and outputs constraints. The inputs constraints are given 
by: 

,min ,maxc c cQ Q Q                                 (4) 

,min ,maxv v vg g g                                 (5) 

min ,maxinj inj injC C C ，                            (6) 

where Qc,min and Qc,max are the lower and upper bounds 
of heating or cooling power. gv,min and gv,max  are the 
lower and upper bounds of ventilation rate. Cinj,min and 
Cinj,max are the lower and upper bounds of the CO2 
injection speed. 

1
cdQ

c
dt

                                        (7) 

2
vdg

c
dt

                                        (8) 

3

injdC
c

dt
                                       (9) 

where c1, c2 and c3 are the change rate limits of the input 
variables heating or cooling power, ventilation rate and 
CO2 injection speed. 

The outputs constraints are given by: 

,min ,maxair air airT T T                              (10) 

,min ,maxair air airRH RH RH                       (11) 

2, ,min 2, 2, ,maxair air airCO CO CO                     (12) 

where Tair,min, RHair,min and CO2,air,min are the lower bounds 
of temperature, relative humidity and CO2 
concentration, Tair,max, RHair,max and CO2,air,max are the 
upper bounds of temperature, relative humidity and CO2 
concentration. 

2.3 Objective function 

The objective of the proposed control strategy is to 
minimize the total energy cost for heating and cooling. 
Therefore, the following objective function is adopted.

( ) ( )
f

i

t

c
t

J s Q t p t dt=                             (13) 

where ti and tf are the initial and the final time of 
optimization respectively. s is the greenhouse area. p(t)is 
the electricity price at the time t. In this paper, the time-
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of-use tariff in South Africa is adopted and given by:

    [0,6] [22,24]

( )     [9,17] [19,22]

    [6,9] [17,19]

o

s

p

p t

p t p t

p t

  


=  
  

                  (14) 

where po, ps and pp are the off-peak, standard, peak TOU 
tariff in R/kWh. R is the South Africa Currency, Rand. 

2.4 Open loop controller design 

The discretized state-space model is as follows: 
( 1) ( ( ), ( ))x k f x k u k+ =                          (15) 

where k is the current time kTs, Ts is the sampling interval, 
x=(Tair, RHair, Cair) is the state variable, u=(Qc, gv, Cinj) is the 
input variable. The objective function is given by: 

( ) ( )1 1

1

N

k

J s u k p k
=

=                            (16) 

where N=T/Ts. T is the total simulation time. u1 is the 
input variable Qc. The open loop controller is to solve the 
problem that minimizing the objective function Equation 
(16) subjects to the constraints from (4) to (12). 

2.5 MPC controller design 

The objective of MPC is to track the reference 
trajectories obtained from the open loop optimization 
(Equation (16)) and reduce the change of input variables. 
Therefore, the following objective function is adopted.

( )( ) ( )( )
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        (17) 

where Np and Nc are the optimization horizon and the 
control horizon respectively. Q and R are weighting 
matrices. x  and u  are the tracking error and 
change of variables respectively and given by: 

( ) ( ) ( )| | refx k i k x k i k x k i + = + − +               (18) 

( ) ( ) ( )| refu k u k k u k = −                         (19) 

where xref and uref are the reference values of state 
variables and input variables. uref is the results of the 
open loop optimization. xref is the state variables 
corresponding to the open loop optimization results uref.  

The MPC control is to minimize the objective 
function Equation (17) and subjects to the constraints 
from (4) to (12). The optimal control is implemented in a 
receding horizon scheme that the first value of the 
solutions is adopted and the rest are discarded.  

3. SIMULATION RESULTS 
In this paper, a Venlo-type commercial greenhouse 

for rose cultivation presented in [17] and [18] is studied. 
The meteorological data is from a weather station at the 
University of Pretoria and shown in Figure 2 and Figure 
3. The parameters of the greenhouse are shown in Table 
1.  

 

 
Fig.2 Temperature and relative humidity 

 
Fig.3 Solar radiation and light radiation 

Table 1. Greenhouse parameters 

Variable Value Unit 

Ccap 30000 J/m2 oC 

h 7 m 

s 40709 m2 

Qc,min  -200 W/m2 

Qc,max 200 W/m2 

gv,min 0 m/s 

gv,max 0.02 m/s 

Cinj,min 0 g/m2s 

Cinj,max 0.02 g/m2s 

c1 0.51 W/m2s 

c2 5.1×10-5 m/s2 

c3 5.1×10-5 g/m2s2 

Tair,min 14 oC 

Tair,max 26 oC 

RHair,min 50 % 

RHair,max 90 % 

CO2,air,max 500 ppm 

CO2,air,min 2000 ppm 
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Fig. 4. Comparison of different optimization strategies

The proposed strategy (Strategy 1) is compared with a 
strategy which aims to minimize the total energy 
consumption (Strategy 2). For Strategy 2, p(t)=1. The 
simulation results are shown in figure 4. The energy 
consumption and energy cost are calculated and shown 
in Table 2. The total energy consumption of Strategy 1 
(4502.37 kWh) is more than the total energy 
consumption of Strategy 2 (3587.39 kWh). However, the 
total energy cost of Strategy 1 (R 9052.08) is less than the 
total energy cost of Strategy 2 (R 9941.20). That is 
because Strategy 1 consumes less energy (2591.36 kWh) 
than Strategy 2 (3111.91 kWh) during peak periods when 
the electricity price is much higher than the standard 
period and off-peak period. 

Table 2. Comparison between MPC and open loop control. 
 Energy consumption 

(kWh) 
Energy cost (Rand) 

 Strategy 
1 

Strategy 
2 

Strategy 
1 

Strategy 
2 

Off-peak 1861.67 395.15 960.07 203.78 

Standard 49.34 80.33 46.61 75.88 

Peak 2591.36 3111.91 8045.40 9661.54 

Total 4502.37 3587.39 9052.08 9941.20 

 
An MPC method is proposed to compare with the 

open loop control used in Strategy 1. The MPC 
parameters are as follows: the predictive horizon Np=600 
s, the control horizon Np=Nc, the weighting matrix 
Q=diag(100,100,100), R=diag(1,1,1). The results of 
minimizing the total energy cost (Strategy 1) are taken as 
the reference trajectories. The comparison between the 
MPC and the open loop control under 2% system 

disturbances is shown in Figure 5. The performance index 
relative deviation mean (RDM) is calculated to compare 
the tracking performance of the open loop and MPC. 
Denote the value of measurement as xmeas, the reference 
value as xref, then the RDM can be obtained by: 

1

( ) ( )1
RDM

( )

N
meas ref

i ref

x i x i

N x i=

−
=                     (20) 

The RDM of open loop control and MPC are shown in 
Figure 6. Compared with open loop control, MPC reduces 
48.40% temperature RDM (from 2.81 to 1.45), 66.77% 
relative humidity RDM (from 3.31 to 1.10), 78.83% CO2 
concentration RDM (from 4.77 to 1.01). The results show 
that MPC has better tracking performance than open 
loop control. 
 

 

Fig. 5. Comparison of MPC and open loop control under 2% 
system disturbances. 
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Fig. 6. Comparison of RDM of open loop control and MPC. 

4. CONCLUSION 
An optimal control strategy is proposed to minimize 

the total energy cost for greenhouse heating and cooling 
while keeping greenhouse temperature, relative 
humidity and CO2 concentration within required ranges. 
The time-of-use electricity tariff is considered to 
calculate the energy cost. The proposed strategy is 
compared with another optimization strategy which 
aims at minimizing energy consumption. A model 
predictive control (MPC) strategy is proposed to address 
system disturbance. The performance index relative 
deviation mean (RDM) of MPC and open loop control 
under 2% system disturbance are calculated. The results 
show that the proposed strategy increases energy 
consumption but reduces energy cost. The proposed 
MPC has better tracking performance than open loop 
control. 
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