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ABSTRACT 
In this study, we aim to find an optimally sized 

battery that can be installed to an existing grid-tied solar 
home system without a prior energy storage system, in 
order to maximize the user’s financial benefits while 
maintaining reliable power supply to the home. To solve 
this optimization problem, we formulate the objective 
function as the net present value of the investment on 
the battery. Solution to the optimization problem 
returns the optimal battery size, power flows and battery 
age status during a 10-year evaluation period. In order to 
identify the most favorable solution to the user, we apply 
the proposed optimization algorithm to five typical 
photovoltaic (PV) generation and home load levels, and 
find that the optimal battery size is very sensitive to the 
level of PV power generation and the home load. In 
addition, it is more financially viable to have the battery 
when the daily PV power generation is less than the 
home load.   

Keywords: Microgrid, energy modelling, energy 
optimization, battery life, solar home system.  

1. INTRODUCTION
Battery energy storage systems (BESS) are widely

used in renewable energy systems. There are a broad 
range of technical, financial and hybrid performance 
indicators for determining the size of a BESS [1]. The 
financial indicators refer to the net present value (NPV), 
levelised cost of electricity (LCOE), and cost benefit ratio, 
etc. The technical indicators include renewable 
curtailment, forecast errors, power quality, battery 
charge/discharge rate, battery degradation and state of 
health (SoH). These parameters can either be optimized 
individually or in combination. For instance, [2] presents 
an optimal sizing algorithm of grid-tied PV battery system 
for residential homes by minimising the user’s annual 
electricity expenditure. Ref. [3] optimizes both the PV 

and battery sizes by optimizing the reliability of power 
supply and minimizing the LCOE. The financial indicators 
are carefully assessed in [4] and [5] with optimal sizing of 
the PV battery solar home system, and both the technical 
and financial indicators are optimized in [6]. 

The component (battery, PV panel, and wind turbine, 
etc.) sizing problem in various renewable energy systems 
is indeed an interactive process of size, operation, and 
maintenance optimizations. Size and capacity of the 
system components directly influence their operation 
patterns, while the operation patterns usually play an 
essential role on the life span of the components. Many 
existing studies considered sizing and operation in 
combination while other studies focus on the 
components’ capacity losses over their lifetime. 
However, existing studies rarely consider the renewable 
energy system component sizing problem as an 
integration of sizing, operation, and maintenance 
optimization problem. 

In this study, our primary goal is to decide the 
optimal battery size that can be installed in an existing 
grid-tied solar home system without a prior energy 
storage system, such that user’s financial benefits can be 
maximised while maintaining reliable power supply to 
the home. An optimization problem is formulated with 
the main objective to maximize the net present value of 
the investment on batteries. Optimal solution to the 
optimization problem returns the optimal battery size, 
power flow and battery age status during a 10-year 
evaluation period. In order to identify the most favorable 
solution for the user, we apply the proposed 
optimization algorithm to five typical PV generation and 
home load levels, and find that the optimal battery size 
is very sensitive to the level of PV power generation and 
the home load. In addition, it is more financially viable to 
have batteries when the daily PV power generation is 
less than the daily home load. 
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2. BACKGROUND AND DATA DESCRIPTION 
Demand and solar PV generation data are recorded 

for 300 residential customers located in an Australian 
distribution network, the Ausgrid. These are half-hourly 
electricity and PV data for a three-year period between 
July 2010 and June 2013, which are publicly available [7]. 
Figure 1 shows the general diagram of grid-connected PV 
system. The existing system does not have a battery and 
this study focuses on the sizing and operation 
optimisation of the battery. For such systems the sizing 
of PV and battery depends on the load demand, load 
consumption pattern and the amount of power needed 
to be injected to the battery or grid. Electricity generated 
from PV can be used to supply the demand from loads, 
store in the battery or sell back to the grid. Electricity 
must be purchased from the electric grid if the PV 
generation and battery discharging cannot meet the 
demand. Due to variable electricity prices through the 
day in a time of use (TOU) tariff with peak, shoulder and 
off peak, electricity can also be purchased from the grid 
when the price is low, and be sold back to the grid when 
the price is high.  
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Figure 1: Configuration of the solar home system. 

3. PROBLEM FORMULATION 
In this section, the battery sizing problem for a solar 

home system is formulated as a nonlinear optimization 
problem with constraints, which also considers the 
optimal power flow management and battery aging. 

3.1 Battery capacity degradation model 

In the literature, the most popular battery 
degradation model to evaluating the capacity loss of 
lithium-ion batteries was presented and experimentally 
validated in [8]. This model takes considerations of the 

cycling time, test temperature, depth-of-discharge 
(DoD), and charging and discharging current rates. The 
model is given in (1), which is widely adopted in practical 
applications [9]. 

Qloss = Be−
Ea
RTAh

ρ
,         (1) 

Qlossis the percentage of battery capacity loss, Bis 
the pre-exponential factor. Ea is the activation energy 
from Arrhenius law in J/mol. Ah  is  the  Ah-
throughput, T  is the absolute temperature in Kelvin, 
and R=8.314 J/(mol∙ K) is the gas constant. ρ=0.55 is 
the power law factor. The rest parameters of the 
capacity loss model were empirically obtained from a 
large set of testing data. The Eais related to the charge 
current, and 

Ea = 31500 − 370.3Crate,       (2) 

where Crate is the current rate. The Ampere-hour 
throughput Ah is calculated by Ah = N × DoD × C, in 
which N  is the cycle number, DoD is the depth-of-
discharge and C is the full capacity of the battery in Ah. 

The model (1) was initially tested under four current 
rates, 1/2C, 2C, 6C and 10C, and was extended to general 
scenarios for current rates below 10C in [8], which 
resulted in 

lnB = ae−λCrate + d,        (3)   

where a=1.226, λ =-0.2797, and d=9.263. 

When evaluating the Ah throughput in [8], the 
battery current rate was uniform. However, in practical 
applications for a solar home system, the battery current 
rate is non-uniform due to unpredicted charging and 
discharging behaviors. In this case, we first obtain the 
daily charging and discharging current profile It, and t is 
the sampling instance over a typical day. For each current 
rate |It|  the life capacity (Ah) of the battery can be 
calculated by Eq. (1), with the life capacity defined as the 
amount of charge that a battery can provide at a specific 
current before its capacity loss reaches 20%. If we 
assume the battery charging and discharging profile is 
repeating on daily basis, then the daily battery capacity 
loss DQloss is 

DQloss = ∑
|It|

Δt

3600

LC(It)

td
t=1 ,    (4) 
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 where td is total number of time intervals per day, 
and LC(It) is the life cycle capacity in Ah at each current 
rate |It|.    

3.2 Battery sizing and power flow optimization 
considering battery aging 

In this section, an optimization problem is 
formulated to identify the optimal size of the battery for 
a typical solar home system. Solutions to the 
optimization model also return the optimal power flows 
and battery aging status.   

The objective function of the optimization problem 
is formulated as the NPV of the battery sizing project. The 
NPV is the difference between the present value of cash 
inflows and the present value of cash outflows over a 
period of time. The NPV is used in capital budgeting and 
investment planning to analyze the profitability of a 
projected investment or project. In this study, the cash 
inflow refers to the selling back electricity to the grid 
according to the given feed-in tariff (FIT), while the cash 
outflow refers to the expenditures on the battery 
procurement, and electricity cost over the evaluation 
period. Since we aim to decide both the battery size and 
power flow in an optimal manor, our design variables are 
the battery size Bs (in kWh), and the daily power flow 
profiles including 1) PVtL(t), which is the PV power 
supplied to the load in kW; 2) PVtB(t), which is the PV 
power supplied to charge the battery in kW; 3) PVtG(t), 
which is the PV power sold back to the grid in kW; 4) 
BtL(t), which is the battery power supplied to the load in 
kW; 5) BtG(t), which is the battery power sold back to the 
grid in kW; 6) GtL(t), which is the grid power supplied to 
the load in kW; and 7) GtB(t), which is the grid power 
supplied to charge the battery in kW, where t refers to 
the time interval [t-1,t). 

The objective function JNPV  in terms of NPV is 
formulated as: 

max JNPV = −BsCbat [1 + floor (
Qloss

20%
)] +

∑
S(1+i)k

(1+r)k
K
k=1 ,           (5) 

where Bs  and Cbat  are the battery size (in kWh) 
and battery cost (in $/kWh). Qloss is the loss of battery 
capacity due to aging over the evaluation period. S is 
the annual income in $, 𝑖 and 𝑟 are the interest rate 
and discount rate per annum, 𝑘 is the index of year, and 
𝐾 is the total number of years involved in the evaluation 

period. The annual income S is the net benefit by 
comparing electricity expenditure in the baseline case 
ycost(in $) (solar home system without battery energy 
storage) and the post-retrofit case Bycost (in $) (solar 
home system with battery energy storage), and 

S = Ycost − BYcost, 

where 

Ycost = 365 × (∑ GtL(t)ΔtToU(t) −
td
t=1

PVtG(t)ηinvΔtFIT(t)), 

BYcost = 365 × (∑ (GtB(t) + GtL(t))ΔtToU(t) −
td
t=1

(BtG(t) + PVtG(t)ηinv)ΔtFIT(t)), 

where ToU(t)  and FIT(t)  are the time of use 
tariff from the grid, and the feed in tariff, respectively, 
Δt is the sampling interval.  

The objective function is subject to the following 
equality and inequality constraints. The equality 
constraints are 

PVtL(t) + PVtB(t) + PVtG(t) = GG(t),     (6) 

PVtL(t)ηinv + BtL(t) + GtL(t) = PL(t),      (7) 

EB(t) = EB(t − 1)(1 − σ) + [GtB(t) +
PVtB(t)]Δtηc − [BtG(t) + BtL(t)]Δt/(η

inv
η

d
),        (8) 

[GtB(t) + PVtB(t)][BtG(t) + BtL(t)] = 0,     (9) 

EB(1) = EB(td + 1),                 (10) 

where GG(t) is the total power generation from the 
solar panel. PL(t)  is the total load demand of the 
residential home. σ  is the self-discharging rate per 
hour; ηc and ηd are the charging and discharging 
efficiency of the batter, respectively; and ηinv  is the 
efficiency of the inverter. Constraint (6) indicates that 
the total power produced by the solar panels during time 
t can be used to supply the load, charge the battery, or 
feed back to the grid. Constraint (7) shows that the load 
demand can be supplied by the battery, solar panel, and 
the grid. Constraint (8) formulates the battery energy 
balance. Constraint (9) restricts that the battery cannot 
be charged and discharged simultaneously, and 
Constraint (10) ensures the initial battery energy on each 
day is the same.     

The inequality constraints are  
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(1 − DoD)Bs ≤ EB(t) ≤ Bs,      (11) 

0 ≤ BtG(t) + BtL(t) ≤ Pd
maxηinv,         (12) 

0 ≤ GtB(t) + PVtB(t) ≤ Pc
max,      (13) 

where DoD is the depth of discharge of the battery, 
and Pd

max and Pc
max are the charging and discharging 

ramp rate limit of the battery during the time period    
[t-1,t). Constraint (11) is the capacity limits of the 
battery. Constraint (12) indicates the battery can supply 
power to the load and grid at the same time but the 
discharging is limited by Pd

max  and Constraint (13) 
indicates that the battery can be charged by both the grid 
power and PV generated power at the same time, but the 
charging capacity is limited by Pc

max.   

The optimization model formulated in Eqs. (5)-(13) is 
a nonlinear constrained optimization problem, which can 
be solved by the “fmincon” toolbox in Matlab.  

4. CASE STUDY 
In this study, we apply the proposed battery sizing 

optimization approach to identify the most cost-effective 
solution for battery sizing, power flow management, and 
battery aging status, in order to demonstrate the 
effectiveness of the proposed model described in Section 
3. Target of the optimization is to solve the optimal 
battery size, power flows between battery, PV, load and 
grid, and the aging status of the battery. In order to solve 
the optimization, following initial parameters are 
required. 
1) home daily load profile and PV generation profile: in 

this study, the daily load profile and PV generation 
profiles of 300 households are recorded at half 
hourly interval from July 2010 to June 2011 in 
Australia. Without loss of generality, we randomly 
selected one household from the dataset for 
detailed investigation. Out of the annual data 
records, we selected five typical scenarios, namely a) 
the opportunistic scenario: maximum PV generation 
and minimum load demand over the year; b) average 
summer profiles; c) annual average profiles; d) 
average winter profiles; and e) the worst case: 
minimum PV generation and maximum load demand 
over the year. The five load profiles are presented in 
Figure 2.  

2) Technical specifications of the solar PV and batteries, 
which are given in Table 1.  

 
Figure 2: Load profile for a typical household 

Table 1. Input values 

 
3) The tariffs include solar electricity buy-back price and 

electricity supply price. Solar electricity buy-back 
price is a constant value, 6c/kWh. The electricity 
supply price has different values during the peak, 
shoulder and off peak time of use periods. Time 
details of electricity supply price are shown in Figure 
3. The price details are 51.128c/kWh for peak 
demand, 19.657c/kWh for shoulder demand, and 
10.758c/kWh for off peak.  
With these initial values, computations to solve the 

optimisation problem are carried out by the “fmincon” 
code of the Matlab Optimisation Toolbox, where the 
“sqp” is chosen as the optimisation algorithm. The 
optimisation outputs are presented in Figures 4-5, and 
Tables 2-3. Due to space limit, this article only reports the 
optimal power flows of the winter case. The home load 
profile and PV generation profiles are shown in the top 
subplot in Figure 3. High demand is observed after the 
midnight as the geysers are controlled to heat up water 
in evening period to save electricity cost. 

Category Value/parameter Unit

PV properties

Capacity 3.78 kWp

Battery properties

Size s kWh

DoD 90%

End of life 80% of capacity

Inverter efficiency 95%

Nominal C Rate 0.3

Charge/discharge efficiency 98%

Discount rate 1%

Interest rate 4%

Project cycle 10 Year

Battery cost 500 $/kWh

Initial SoC 50% of capacity
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Figure 3: Power demand, PV generation (in Winter) and electricity 

tariffs 

 
Figure 4: Power dispatching from PV, battery and the grid 

Figure 4 shows the detailed power dispatching 
from the PV, battery and load. The top subplot shows 
majority of the PV generations are delivered to the 
load with a very small amount of power goes to charge 
the battery during at midday. The middle subplot 
shows that battery discharges to the load during the 
peak demand period. It shows in the bottom subplots 
that the grid power mainly supplies the load demand 
and charge the battery when the grid tariff is low. It is 
also observed that no battery and PV power is sold 
back to the grid in winter-time as the feed-in-tariff is 
very low as shown in the bottom subplot of Figure 3. 
Figure 5 shows the battery state of charge and the 
charging and discharging behaviours. The charging and 
discharging profile are reasonable as the battery is 
charged during low grid tariff period and discharge to 
the load at high grid tariff period.  

In Tables 2, the optimal battery size, NPV, battery 
capacity loss, and daily load and PV generation energy 
during the evaluation period are presented. 

 
Figure 5: Battery status and charging/discharging profile 

It shows that when the load is less than daily PV 
generation, the optimisation suggests smaller battery 
sizes and negative NPV values. The power flow 
optimisation shows that majority of the PV power 
generation should be sold back to the grid, because the 
load is also small. When the PV generation is less than 
the daily power demand, the optimisation suggests 
larger size of battery should be installed such that the PV 
generation can supply the demand in the daytime and 
battery to supply the demand in the peak demand period. 
It also shows that in the worst case, the battery is more 
stressed in terms of charging and discharging while the 
battery capacity loss is over 20%, which should be 
replaced at least once over the evaluation period.  

Table 3 compares the daily grid supply and user’s 
daily electricity cost before and after installation of the 
battery. It is observed that the grid supply does not 
change much on daily basis but the users save 32% of the 
electricity cost on annual average and save over 50% in 
winter and worst cases. This indicates the batteries are 
acting as energy storage to enable the load shifting 
function.      

5. CONCLUSION, DISCUSSIONS AND FUTURE WORK 
 

This study uses optimisation to investigate the 
battery sizing, power flow management and capacity loss 
characteristics in solar home systems. Some preliminary 
results have been identified. The proposed algorithm can 
also be generalised to study the feasibility of install solar 
home systems, with various PV generation capacity, load 
demand, and electricity tariffs and FITs. Potential future 
search activities will be conducted in following aspects: 

1) Identify optimal solutions to an off grid solar 
home system;  

2) Further investigations on other users in the 
Ausgrid dataset;  

3) Identify optimal solutions when look at multiple 
technical and financial indicators; 
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4) Sizing optimisation in a day ahead electricity 
market.    
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Table 3. Optimal results (continued) 

 
*worst case without considering battery capacity loss. 

Scenario
Daily grid supply 

without battery (kWh)

Daily grid supply 

with battery (kWh)

Daily electricity cost 

without battery ($)

Daily electricity cost 

with battery ($)

Daily cost 

saving (%)

Opportunistic 4.20 3.90 (0.76)$                               (0.77)$                          2%

Summer 6.05 5.67 0.40$                                0.30$                           24%

Annual average 8.77 7.87 1.09$                                0.74$                           32%

Winter 12.32 12.77 3.16$                                1.54$                           51%

Worst case 30.89 31.26 7.86$                                3.71$                           53%

Worst case 30.89 31.29 7.86$                                3.71$                           53%

Table 2. Optimal results 

Scenario 
Battery size 

(kWh) 
NPV ($) 

Battery capacity 
loss 

Daily demand 
(kWh) 

Daily PV generation 
(kWh) 

Opportunistic 0.4019 -198.66 1.30% 6.975 25.954 

Summer 0.5173 -10.532 1.81% 8.3741 9.1217 

Average 1.2069 425.19 4.41% 11.7046 6.6653 

Winter 5.0726 2622 10.48% 16.1328 3.9719 

Worst case* 12.4115 7460 27.13% 33.977 3.944 

Worst case 12.4115 1992 27.00% 33.977 3.944 
*worst case without considering battery capacity loss. 


