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ABSTRACT 
 A deep learning based hierarchical predictive 

control is developed for regulating the oxygen 
stoichiometry of proton exchange membrane fuel cell 
(PEMFC) engine in this study. Firstly, a hierarchical 
predictive control scheme is proposed by designing the 
first-level predictor to determine the operation current 
of PEMFC engine, and then the second-level model 
predictive control (MPC) generating robust control 
input. BP neural network is selected to formulate the 
first-level prediction model and airflow model is 
linearized to design MPC with suitable prediction 
horizon and control horizon. A simulation test is carried 
out through operating in a mixed driving cycle 
MANHATTAN + (a part of) UDDS to verify the efficacy of 
the proposed method. The results indicate that the 
oxygen stoichiometry tracks the reference value well 
avoiding the starvation of the PEMFC engine. 
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1. INTRODUCTION 
Proton exchange membrane fuel cell (PEMFC) 

engine has the beneficial features of the high energy 
density, high efficiency, and low operation temperature, 
which leads it to become one of the most remarkable 
candidates for alternative energy vehicles [1-3].  

The power response of the PEMFC is slow and 
limited by the oxygen and hydrogen supply, and other 
auxiliaries. Moreover, to ensure the reliability of the 

PEMFC output performance, the auxiliary system is 
asked to satisfy the required operation condition. As 
one of the essential auxiliaries of PEMFC engine, an air 
compressor provides air flow to the cathode of PEMFC. 
The excess air supply increases the energy consumption 
of air compressor and reduces the energy conversion 
rate of the PEMFC engine. Too much air may also take 
away the heat required for the reaction, which reduces 
the efficiency of power generation. But if the air is 
insufficient, the PEMFC cannot react inadequately, 
reducing the utilization of PEMFC and even damaging 
the cell itself. Thus, many studies have conducted on 
the oxygen stoichiometry regulation of PEMFC engine 
by using various control methods, including fuzzy 
control, robust control, adaptive control, and so on [4]. 
Meanwhile, feedback and feedforward control 
strategies are adopted to achieve the maximum net 
power and prevent oxygen starvation. Xu et al. [5] 
studied the three internal state robust control 
strategies based on an adaptive second order sliding 
mode and a nonlinear proportional integral feedback 
control algorithms with a series of comparative studies. 
In Ref. [6], the gas supply regulation of the hybrid 
PEMFC generator was implemented by several robust 
control strategies. However, in practice, the operation 
conditions are changeable resulting in mass and rapid 
requirement oxygen that is at risk of oxygen starvation. 

In this paper, a deep learning based hierarchical 
predictive control for oxygen stoichiometry regulation 
of an automotive PEMFC engine is introduced. In the 
first-level, the deep BP neural network is applied to 
predict the vehicle speed associating with the power 
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requirement of PEMFC engine, and in the second-level, 
a model prediction control (MPC) is developed based on 
the model of oxygen stoichiometry of PEMFC engine, to 
prevent oxygen starvation.  

In the rest of this paper, a hierarchical predictive 
control configuration is introduced in Section 2. Section 
3 describes the oxygen stoichiometry regulation results 
via a simulation test. Finally, conclusion is drawn about 
the oxygen stoichiometry regulation methods. 

2. DEEP LEARNING BASED HIERARCHICAL 
PREDICTIVE CONTROL SCHEME 

The deep learning based hierarchical predictive 
control scheme is shown in Fig 1, including the first-
level predictor by using deep BP neural network and 
second-level MPC for air mass flow control. The first-
level predictor generates the vehicle driving speed to 
lead to a reference oxygen stoichiometry in the 
prediction horizon, and the second-level MPC 
implements the regulation of real-time oxygen 
stoichiometry (oxygen excess ratio). 

 
Fig 1 Hierarchical predictive control scheme 

2.1 First-level Predictor 

The first-level predictor takes the historical speeds 
measured by the speed sensor as an input, and predicts 
the speed sequence of the next moments, through the 
vehicle dynamics equation. Then, the power required of 
the PEMFC engine can be obtained. 

Deep BP neural network prediction method [7,8] is 
adopted for designing the first-level predictor. The 
speed prediction model based on deep BP neural 
network was established, including the number of layer 
of the network L, the number of nodes in each layer m, 
activation function and training function. Here, L=3, 
m=20, and the activation function is sigmoid and the 
training function is GradientDescent. 

The driving cycles of the training sample are 
configured by WVUCITY, NEDC, 1015_6PRIUS, UDDS, 
FTP and NYCCOMP, as shown in Fig 2. The training 

process is using every ten historical speeds of sample 
speeds as the input and the next five speeds as the 
output, and using the determined network structure to 
train 100000 times, where the prediction algorithm is 
shown in Fig 3. 

 
Fig 2 Driving cycles of training samples 

 

 
Fig 3 Predicting flow of BP neural network 

Calculate the output of the hidden layer H: 
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where xi is the input vector, ωij and aj are the weights 
and the biases between the input layer and hidden 
layer, respectively. f(*) is the hidden layer activation 
function. The output of the output layer Ok is given by 
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where ωjk and bk are the weights and the biases 
between the hidden layer and output layer. 
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2.2 Second-level MPC for Oxygen Stoichiometry 

The control objective of the second-level MPC is 

regulating the oxygen stoichiometry 
2O (defining as 

the ratio between the oxygen flowing into the cathode 
and the oxygen reacted in the cathode) at reference 

values, here 
2O =2.0 is selected as a setpoint. In this 

section, the air compressor and oxygen stoichiometry 
models are presented, and used for designing the 
model-based oxygen stoichiometry MPC controller. 

The dynamic characteristics of the air compressor 
supplied PEMFC engine can be described by [9,10]: 
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where ωcp represents the compressor speed; Јcp 
denotes the combined inertia of the compressor and 
the motor; τcp is the required torque of the compressor; 
Wcp is the air compressor output air flow; supply 
manifold pressure Psm and mass msm are simplified; Ra is 
the gas constant; γ is the ratio of the specific heats of 
air; Tcp,out and Wsm,out are the air compressor output 
temperature and the outlet mass flow of the supply 
manifold, respectively. Moreover, the compressor 

motor torque input τcm is related to the compressor 
supplied voltage Ucm, and the motor efficiency ŋcm, as 

well as motor constants ke, kt and Rcm, which can be 

formulated by 
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Based on the air flow dynamics of the air 
compressor model, the oxygen flows into the cathode 

incaOW ,,2
 can be calculated by 
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and the oxygen flow consumed by PEMFC is depending 
on the stack current [11,12] 
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where  is the humidity ratio, 
2Oy  is the oxygen 

mass fraction, Ist is the stack current, and F is the 
Faraday constant. 

Then, the oxygen stoichiometry 
2O is given by,  
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Combining with Eq. (3)-(7) and using the Taylor 
expansion method in a selected linearization point, the 
system plant can be expressed as follows 

     X t AX t BU t             (8) 

   Y CX t DU t             (9) 

in which X=[Psm msm ωcp]
T
 is the state variable, Y=λO2 is 

the control objective. U=[Ucm Ist d(t)]
T, Ist the measured 

disturbance, d(t) is the unmeasured disturbance. 
  According to the linear model, MPC with P=15, M=5 
and Ts=1ms, is designed under the predictive 
interference Ist, 

3. SIMULATION STUDY 
The driving cycle used for testing the proposed 

deep learning based hierarchical predictive control 
scheme is consist of a MANHATTAN cycle and the first 
third of the UDDS cycle. The actual speed of the defined 
driving cycle and the predictive speed by using the deep 
BP neural network are as show in Fig 4. Moreover, the 
current of PEMFC engine is calculated by the vehicle 
dynamics, and the actual current and the predictive 
current results are also given in Fig 5. The results 
indicate that the operation condition prediction is with 
good fitting performance in both speed terms and 
current terms.  

 
Fig 4 Comparison of prediction and actual speed 

 
Fig 5 Comparison of prediction and actual current 
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Fig 6 

2Oλ distribution according to predictive speed and 

actual speed 

 
Fig 7 Wcp distribution according to predictive speed and 
actual speed 

 
Furthermore, the oxygen stoichiometry regulation 

performance is tested in the condition of the defined 
driving cycles. The results show that the proposed 
hierarchical predictive control scheme can be used to 
control the oxygen stoichiometry for achieving the 
desired setpoint tracking as well as the PEMFC engine 
oxygen starvation preventing. 

4. CONCLUSION 
In this paper, a hierarchical predictive control 

strategy is proposed to predict and control the oxygen 
stoichiometry of the air supply system of PEMFC engine. 
From the predictive results, the prediction performance 
of the deep BP neural network is acceptable, providing 
accurate current interference for the control of the 
bottom air flow. Moreover, the simulation test through 
the defined driving cycles indicates that the oxygen 
stoichiometry is well regulated, and is always higher 
than 1 and air starvation can be avoided, which may 
improve the lifetime of the PEMFC engine. 

ACKNOWLEDGEMENT 
This work was supported by the National Natural 

Science Foundation of China (Grant No. 51675042), the 
Natural Science Foundation of Fujian Province of China 

(Grant No. 2017J01690), the Qishan Scholar Program in 
Fuzhou University (Grant No. XRC-1643), and the China 
Postdoctoral Science Foundation (Grant No. 
2019M650505). 

REFERENCE 
[1] Daud W R W, Rosli R E, Majlan E H, et al. PEM fuel 
cell system control: A review[J]. Renewable Energy, 
2017, 113: 620-638. 
[2] Han J, Yu S, Yi S. Adaptive control for robust air flow 
management in an automotive fuel cell system. J Appl 
Energy 2017, 190: 73-83. 
[3] Wang Y X, Yu D H, Chen S A, et al. Robust DC/DC 
converter control for polymer electrolyte membrane 
fuel cell application. J Power Sources 2014,261:292-305. 
[4] Beirami H, Shabestari A Z, Zerafat M M. Optimal PID 
plus fuzzy controller design for a PEM fuel cell air feed 
system using the self-adaptive differential evolution 
algorithm. Int J Hydrogen Energy 2015, 40(30): 9422-34. 
[5] Xu L, Hu J, Cheng S, et al. Robust control of internal 
states in a polymer electrolyte membrane fuel cell air-
feed system by considering actuator properties. Int J 
Hydrogen Energy 2017, 42(18): 13171-13191. 
[6] Hernandez-Torres D, Riu D, Sename O. Reduced-
order robust control of a fuel cell air supply system[J]. 
IFAC-PapersOnLine, 2017, 50(1): 96-101. 
[7] Guo Y, Zhao Z, Huang L. SoC estimation of Lithium 
battery based on improved BP neural network[J]. 
Energy Procedia, 2017, 105: 4153-4158. 
[8] Ren T, Liu S, Yan G, et al. Temperature prediction of 
the molten salt collector tube using BP neural network. 
IET Renew Power Gener 2016, 10(2): 212-220. 
[9] Pukrushpan J T, Peng H, Stefanopoulou A G. 
Simulation and analysis of transient fuel cell system 
performance based on a dynamic reactant flow model, 
ASME 2002 IMECE. ASME, 2002: 637-648 
[10] Xu L, Hu J, Cheng S, et al. Robust control of internal 
states in a polymer electrolyte membrane fuel cell air-
feed system by considering actuator properties. Int J 
Hydrogen Energy 2017, 42(18): 13171-13191. 
[11] Zhao Y, Pistikopoulos E. Dynamic modelling and 
parametric control for the polymer electrolyte 
membrane fuel cell system. J Power Sources 2013, 232: 
270-278. 
[12] Wang Y X, Kim Y B. Real-time control for air excess 
ratio of a PEM fuel cell system. IEEE/ASME Trans 
Mechatron 2014, 19(3): 852-861.  


