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ABSTRACT 
 This paper presents a method for spatially 

representing the total temporal energetic 
complementarity between three different variable 
renewable sources, by means of an index created from 
correlation coefficients and compromise programming. 
The method is employed to study the complementarity 
of wind speed, solar radiation and surface runoff on a 
monthly scale using continental Colombia as case study, 
during the year of 2015. Results show that the 
combination of solar radiation and surface runoff 
presented the highest energetic complementarity during 
this year, heavily influenced by El Niño phenomenon. 

Keywords: energetic complementarity, renewable 
energy, variable renewables, correlation, compromise 
programming, geographic information systems  

NOMENCLATURE 

Abbreviations 

GIS Geographic Information Systems 
VRES Variable Renewable Energy Sources 

Symbols 

κt 
total temporal complementarity 
index  

1. INTRODUCTION

One of the main concerns related to some 
renewables is their usually common variability, produced 
by meteorological factors. This features frequently poses 
a challenge for integrating these energies into national 
power grids [1], and constitutes one of the main 
drawbacks of stand-alone systems based on variable 
renewable energy sources (VRES), because it might result 
in performance issues or system oversizing [2]. 

One option to overcome this shortcoming is to 
consider hybrid power systems integrating two or more 
VRES in a combination in which these sources 
complement each other. This energetic complementarity 
is usually expressed in terms of a correlation coefficient 
or complementarity index. Both types of metrics are 
used to describe the potential of energy sources to 
complement each other on a temporal, spatial or 
spatiotemporal scale, thereby ensuring supply reliability 
and minimizing power output fluctuations or shortages. 
The spatial representation of energetic complementarity 
has been conducted by some authors like Silva et al. [3], 
Cantão et al. [4], Vega-Sánchez et al. [5] and Risso et al. 
[6]. The paper by Borba and Brito [7] was the only paper 
found that presents a spatial representation of a metric 
assessing complementarity between more than three 
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sources, extending from the method for estimating a 
complementarity index, developed by Beluco [8].   

From the above observations, this paper presents a 
method for the spatial representation of an index 
describing the temporal energetic complementarity 
between three VRES. The method is an extension from 
the manuscript by Canales et al. [9], which is based on 
linear metric built on correlation coefficients and 
compromise programming. The continental territory of 
Colombia was used as case study for this paper.  

2. MATERIAL AND METHODS 
 
The method presented in this paper is based on the 

work by Canales et al. [9], extending it in order to 
perform a spatial evaluation and comparison of temporal 
energetic complementarity between pairs of resources 
and a joint combination of three VRES. 

This section also summarizes the main inputs used in 
a case study for illustrating the method described.  

2.1 Method 

Correlation metrics allow assessing at which level 
two variables are linearly related. From the perspective 
of VRES, correlation coefficients can be used to assess if 
one resource is able to supplement or complement the 
energy production capacity of another. Negative 
correlation coefficients between a pair of VRES indicate 
some degree of temporal energetic complementary [10]. 
Based on Cantão et al. [4], Table 1 describes the adopted 
interpretation of the correlation coefficient value. For 
this paper, authors use Pearson’s as the correlation type, 
resulting in three different values of fk(c), one for each 
paired combination of resources. 

 
Table 1 Correlation coeff. interpretation (Adapted from [4]). 

Correlation 
coefficient (CC) 

values 
Interpretation 

0.9 ≤ CC ≤ 1.0 Very strong similarity 
0.6 ≤ CC < 0.9 Strong similarity 
0.3 ≤ CC < 0.6 Moderate similarity 
0.0 ≤ CC < 0.3 Weak similarity 
-0.3 < CC ≤ 0.0 Weak complementarity 
-0.6 < CC ≤ -0.3 Moderate complementarity 
-0.9 < CC ≤ -0.6 Strong complementarity 
-1.0 ≤ CC ≤ -0.9 Very strong complementarity 

 
For allowing the assessment of the joint 

complementarity between the 3 VRES, one suitable 
method is the utilization of multi-criteria analysis 

techniques, with compromise programming being the 
method chosen for this paper. This technique focuses on 
finding the closest point to the ideal solution, within the 
domain of the feasible solutions. According to Gershon 
and Duckstein [11] equation 1 can be used for calculating 
the metric Lp, that in compromise programming 
represents the distance of each option fk(c) to the 
optimal solution (usually unfeasible): 

 

𝐿𝑝(𝒄) = [∑ 𝛼𝑘
𝑝

|
𝑓𝑘
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 (1) 

 

where: αk
p

 are the weights for each component k 

(where k is each paired combination). As described in [9], 
the method considers that all paired combinations have 

the same importance, therefore, αk
p

= 1 for all cases. 

Also in equation (3), fk(𝐜) is the correlation coefficient 
for the corresponding paired combination of resources; 

fk
best is the most desirable value of the correlation 

functions, therefore, fk
best = − 1 , because it would 

represent full complementarity; fk
worst is the less 

desirable value of the correlation functions, then, 

fk
worst = 1 , because it would represent full similarity 

(i.e., the simultaneous occurrence); p is the parameter 
that defines the type of geometrical distance between 

fk
best and fk(𝐜). When p = 1 (as in this paper), Gershon 

and Duckstein [11] explain that all deviations from fk
best 

are considered in direct proportion to their magnitudes. 
For 2 (Euclidean distance) ≤ p < ∞, the largest deviation 
has the greatest influence. 

When considering three sources, the total temporal 
complementarity index κt can be calculated by 
normalizing the Lp(c) metric through the following 
expression: 

𝜅𝑡(𝒄) =
3 − 𝐿𝑝(𝒄)

2.25
 (2) 

with κt values ranging from 0 (perfect synchronicity 
between the three VRES) to 1 (perfect complementarity). 
Values closer to 1 would indicate a more uniform 
aggregate behavior of the three time-series, while values 
closer to 1 would present greater amplitudes in terms of 
peaks and valleys of this aggregate behavior. A general 
demonstration of how equation (2) was derived can be 
found in the appendix section of Canales et al. [9]. The 
process for creating the energetic complementarity map 
between the 3 VRES is summarized in Fig 1.   
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Fig 1 Diagram describing the method for the spatial 
representation of complementarity between 3 VRES 

2.2 Case study 

Situated at the northern part of South America, the 
continental territory of Colombia was used as case study 
(approx. 1,142,748 km²) for this paper. The dataset used 
in this work corresponds to the average monthly solar 
net radiation, surface runoff and wind speed at 10 m 
from ERA5 reanalysis [12] for the year of 2015. The 
intensity of El Niño phenomenon was particularly strong 
that year [13], with anomalously warm sea surface 
temperatures that suggest that a 100% natural origin is 
unlikely [14]. 

3. RESULTS AND DISCUSSION 
 

This section succinctly presents the main findings of 
this study. Using the data and methods described in the 
previous section, Fig 2 to Fig 4 present the correlation for 
each paired combination of resources, as well as their 
corresponding percentages for each classification 
defined at Table 1.  

The results shown in Fig 2 indicate most of the 
country presents a complementary behavior between 
solar radiation and surface runoff. However, it must be 
pointed out that this does not automatically mean that 
hydropower potential is available at all regions, because 
this generation capability is also defined by available 
head and the main courses of rivers, and both features 
depend on favorable and specific terrain features. 

 

 
Fig 2 Correlation map for radiation and surface runoff 

The wind speed and solar radiation correlation map 
(Fig 3) show that most of the territory exhibits a similar 
behavior between these two VRES, except for some 
regions, specifically near Darien, Amazonia and the 
mountain chains (Cordillera Oriental and Cordillera 
Central). 

Similar to solar radiation and surface runoff, most of 
the country presents a complementary behavior along 
the year for wind speed and surface runoff (Fig 4).  

As previously mentioned in this document, the year 
in analysis was marked by el Niño phenomenon, which 
usually brings droughts and forest fires within Colombia. 
Besides the low precipitation and corresponding surface 
runoff, the high similarity between wind and solar 
resources during this year could be explained by the 
relation between these two resources. Wind is an 
indirect form of solar energy, and is caused by 
differential heating of the earth’s surface by the sun [15].  
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Fig 3 Correlation map for radiation and wind speed 

 
Fig 4 Correlation map for surface runoff and wind speed 

Once the three correlation maps are found, the 
process described in Fig 1 is applied, resulting in the map 
shown in Fig 5, which presents the κt values for the entire 
territory under consideration. Normalizing the 
correlation values within a scale from 0 (full similarity) to 
1 (full complementarity) allows estimating which one of 
the four possible combinations presented from Fig 2 to 
Fig 5 is the best option at each location. 

 
Fig 5 Map showing KT index at each location 

These results from the aforementioned 
normalization are shown in Fig 6, with results suggesting 
that, in terms of complementarity, the higher normalized 
score for most of the country is obtained from the 
correlation between radiation and runoff, followed by 
the complementarity between the 3 VRES. These results 
could be used as a starting point for regional planning 
related to hybrid power systems and the method can be 
easily applied to other areas of the world and to other 
VRES like biomass and from the ocean. 

4. CONCLUSIONS 
This paper described a method for the spatial 

representation of the temporal complementarity 
between three VRES: solar radiation, surface runoff and 
wind speed. The monthly averages for these resources 
were obtained from ERA5 reanalysis [12] for the year of 
2015, using the continental territory of Colombia as case 
study. For this year influenced by El Niño phenomenon, 
the combination of solar radiation and surface runoff 
presented the highest energetic complementarity. 

The method could be applied to other regions of the 
world, and its results might help in the initial 
assessments for regional planning of hybrid power 
systems based on VRES. Extended works could evaluate 
the impact of different climate conditions and time 
scales.   
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Fig 6 Map of best options in terms of complementarity 
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